Wilderness and Aesthetic Values of Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Wilderness and Aesthetic Values of Antarctica Wilderness and Aesthetic Values of Antarctica Abstract Antarctica is the least inhabited region in the world and has therefore had the least influence from human activities and, unlike the majority of the Earth’s continents and oceans, can still be considered as mostly wilderness. As every visitor to Antarctica knows, its landscapes are exceptionally beautiful. It was the recognition of the importance of these characteristics that resulted in their protection being included in the Madrid Protocol. Both wilderness and aesthetic values can be impaired by human activities in a variety of ways with the severity varying from negligible to severe, according to the type Protocol on Environmental Protec tion to the Antarctic Trea ty - of activity and its duration, spatial extent and intensity. A map of infrastructure and major travel routes the "M adrid Protocol" in Antarctica will be the first step in visually representing where wilderness and aesthetic values Article 3[1] may be impacted. It is hoped that this will stimulate further discussion on how to describe, acknowledge, The protection of the Antarctic environment and dependent an d associated ecosystems and the intrinsic value of Antarctica, understand and further protect the wilderness and aesthetic values of Antarctica. including its wilderness and aesthetic values and its value as an area for the conduct of scientific research, in particular research essential to understanding the global environment, shall be fundamental considerations in the planning and condu ct of all activities in the Antarctic Treaty area. An tarc tic ice ca p OrcadasjSigny j[_[_ Dakshin Gangotri Neumjayer j [_Mjaitri [_ Mou nt Elliott, Fr amn es M oun tains Lem aire Chan nel SANAE IVj (3) [_[_ j Troll (4)Tor Novolazarevskaya [_j [_ [_ j A[_suka Ajboa Wasa j Princess Elisabeth [_[_ Jinnah SyowaS17 [_ j[_ Molodezhnaya j [_ [_ Petrel Kohnen j[_Molodezhnaya Airfield MarsjhFrei [_ [_ [_j[_j j[_j Marambio Dallma[_jnJub[_ja[_jny[_j Mizuho [_jCámjjajra [_j jj [_[_j j j Halley Primaveraj j Matienzo j [_j [_jj j[_ lij å Ye[_ljchjjoBjrjown j j[_j[_j j li Melchij[_olirjVidejla li Weddell Sea j [_Palmer j Mawson Vernadskliy j Belgrano II (1) Dome Fuji j[_ j j jj[_ [_ j jj li jjRjothera li Carvajal [_jj An j s [_jj jSan Matratrícn j untain [_ j tic j j les Mo j Rothera Skiway j Pen Char Fossil iBnsluff Prince Soyuz [_ ula li Sobrjal [_ li [_ j Druzhnaya 4 [_ Sky BRluonne Ice Shelf Zhongshan [_li li j [_ Davis Law – Racovita Pr[_jjogress 2 Kunlun Arturo Parodi [_ [_#V j ANI Patriot Hillsj li Amundsen-Scott j Ellsworth Mountains j [_li li Legend Mirny [_ [_ Research sta tio ns and facilities j j j j Refuge /fie ld hut li T Vostok #V ra AN I Patrio t Hills Base C amp li li j j n [_ li sa Au tomatic Weathe r Station li n Edgeworth-David li ta li rc j[_ å Depot j ti li c li M Environmental doma ins of A ntarctica ou n ta Coastal ice free (D,G) Siple Dome in [_ j li s Mountainous ice free (A,B,C,R,S,T,U) li Concordia (2) Casey Antarctic Peninsula ice fields (E) [_li j Wilkins Runwa[_y j Ross Ice Shelf [_ Coastal-continental margin (L,M) j Ice shelves and floating glaciers (F,H,I,J,K,P) li li li li Russkaya Central Antarctic ice sheet (N,O,Q) [_ j Scott BalislieMjcjMurdo Mid Point Projectio n: Polar ste reog raph ic j[_jlij jjj lij jlij[_li jOdell Glacie[_r j Ma[_rble Point Heliport Data sources : D85 skiway Scientific Comm itte e on Antarctic R ese arch (SCAR ) Antarctic Digital Dat abase Ross Sea Council of Mana gers of National Antarct ic Progra ms (COM NAP) li [_ Enigma Lake li RADAR SAT Ant arctic Mapping Project li Gondwana Landcare Con sulting (NZ) [_ li Mario Zucche[_lliBrowning Pass Sitry km [_ j 0 250 500 750 1,000 li j li About this map j D10 skiwayPrud'homme li lij[_liDumont d'Urville This map show s the ma jor items of infrastructure as catalogue d by COMN AP, the SC AR Antarctic D igital Da tabase an d others. jli li It does not cap ture the full ran ge of infrastructure present in Antarctica such as aba ndoned sta tio ns, all field huts, m arked route s, Lenindgradskayalili scientific eq uip ment, e tc. Nor does it show the area from w hich infrastructure is visible or a udible . [_ Environmental Domains of Antarctica The e nvironmen tal domains of Antarctica (EDA) dataset p rovides a bio-geographical classification Aesthetic values of the Antarctic enviro nment. It was comp iled by La ndcare Research in New Zea lan d and is being “There is, I fe el sure, no reg ion in the wo rld more grand in its sce nery tha n the Antarctic, an d no place m ore t ranscenden t in its be auty. hosted on t he Antarctic Tre aty Secreta riat and Australian Anta rctic D ivision websites after its It is a vast w onderland laid out o n a vast sca le, in w hich littleness has no p lace; but its ve ry vastness, no less t han its beauty, accept ance at ATCM XXXI (R esolu tion 3, 200 8). It assists the requirem ent und er Annex V o f the whlile it q uickens the traveller’s daily w onlider and deepen s h is reveren ce, forces him to feel that it is a world he can n ever conq uer, Protocol on En vironment al Protection to the Antarctic Treaty of building a systematic a world in which the fo rces of na ture are t oo tremendo us to overcom e, and must re signed ly be bowed before in the h ope tha t they will environmen tal-geo grap hical framew ork for the iden tification of a reas to be includ ed in Antarctic suffe r him to co me and pass again unscathed .” R udmose Brow n. 1906 . The Voyage of the “Scotia”. Sp ecially Protected Areas, wh ich includes “a reas of outstanding ae sth etic a nd wilderness values”. The p rote ction o f aesthetic valu es of Antarctica can be inte rpreted a s p rotection o f natural la ndsca pes, especia lly those to which we respond as Wilderness values beautiful or awesom e. "The Antarctic continent is the last landm ass to be ent ered and utilized by Man. Research in lan dscap e aesthetics has found that hu mans re sp ond mo re po sitive ly to certain landscapes than others: mount ain s, lakes and The con tine nt is so vast an d inhospitable that, even with m odern tra nsp ort a nd othe r coa sta l scenes ten d to be more highly p referre d. Visua l evidence o f human activity, for examp le, b uildings, struct ures an d other tech nologies, Man h as made o nly a f ew tracks an d establishe d only a few sm all artefa cts te nds to detract from hum an aesthe tic response to land scape s a nd this has been sh own to be the ca se in Antarctica a lso. sett lem ents on its surfa ce. The Antarctic is the ep ito me of w ilderness, yet it has While it is not practicab le t o id entify every landscape tha t may have a est hetic value, it is possib le t o id entify those types of landscapes con tributed much to h uman w elfare thro ugh the scientific d iscoveries mad e there. that hum ans pre fer. Area s a roun d la ke s, f or exam ple , as well as havin g scientific va lue tend a lso ha ve hig h aesthetic valu e. Continued use of the Ant arctic, especially if increased, could erode or destroy so me of Wilderness and ae sth etic values may be im paired by h uman a ctivities; th e severity varying from neg ligible to severe acco rding to the type the natu ral qualities of this unspoilt wilde rness unless special care is ta ken to avoid or of activity and th e dist ance the impa ct may carry, both visibly an d audibly. reduce t he effects of n ew activities." Be nninghoff, W.S. a nd Bonn er, W.N. (1985). Man 's impact on t he Antarctic environm ent. The M adrid Protocol provide s f or th e pro tectio n of wilderness and aesthe tic values both thro ugh the environme ntal im pact proce ss Response by th e Scien tific Com mittee on Anta rctic R esearch ... to R ecommen dation XII-3 (Art icle 3.1 a nd Article 3 .2.b.vi; An nex I, Article 3 .2.i) and the Antarct ic Specially Protected Are a Syste m (Ann ex V, Article 3.1 and Article 3.2 .g). of the Tw elfth Antarctic Tre aty Consultative Mee tin g. The Antarctic Treaty area is the least inhab ited reg ion in the wo rld and has had th e le ast in flue nce A ma p of infrast ructure and major travel rou tes in Anta rctica will be t he first step in visu ally re present ing where w ilderness and ae sth etic values from human act ivitie s.
Recommended publications
  • 'Landscapes of Exploration' Education Pack
    Landscapes of Exploration February 11 – 31 March 2012 Peninsula Arts Gallery Education Pack Cover image courtesy of British Antarctic Survey Cover image: Launch of a radiosonde meteorological balloon by a scientist/meteorologist at Halley Research Station. Atmospheric scientists at Rothera and Halley Research Stations collect data about the atmosphere above Antarctica this is done by launching radiosonde meteorological balloons which have small sensors and a transmitter attached to them. The balloons are filled with helium and so rise high into the Antarctic atmosphere sampling the air and transmitting the data back to the station far below. A radiosonde meteorological balloon holds an impressive 2,000 litres of helium, giving it enough lift to climb for up to two hours. Helium is lighter than air and so causes the balloon to rise rapidly through the atmosphere, while the instruments beneath it sample all the required data and transmit the information back to the surface. - Permissions for information on radiosonde meteorological balloons kindly provided by British Antarctic Survey. For a full activity sheet on how scientists collect data from the air in Antarctica please visit the Discovering Antarctica website www.discoveringantarctica.org.uk and select resources www.discoveringantarctica.org.uk has been developed jointly by the Royal Geographical Society, with IBG0 and the British Antarctic Survey, with funding from the Foreign and Commonwealth Office. The Royal Geographical Society (with IBG) supports geography in universities and schools, through expeditions and fieldwork and with the public and policy makers. Full details about the Society’s work, and how you can become a member, is available on www.rgs.org All activities in this handbook that are from www.discoveringantarctica.org.uk will be clearly identified.
    [Show full text]
  • Wastewater Treatment in Antarctica
    Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Rapid Transport of Ash and Sulfate from the 2011 Puyehue-Cordón
    PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Rapid transport of ash and sulfate from the 2011 10.1002/2017JD026893 Puyehue-Cordón Caulle (Chile) eruption Key Points: to West Antarctica • Ash and sulfate from the June 2011 Puyehue-Cordón Caulle eruption were Bess G. Koffman1,2 , Eleanor G. Dowd1 , Erich C. Osterberg1 , David G. Ferris1, deposited in West Antarctica 3 3 3,4 1 • Depositional phasing and duration Laura H. Hartman , Sarah D. Wheatley , Andrei V. Kurbatov , Gifford J. Wong , 5 6 3,4 4 suggest rapid transport through the Bradley R. Markle , Nelia W. Dunbar , Karl J. Kreutz , and Martin Yates troposphere • Ash/sulfate phasing, ash size 1Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA, 2Now at Department of Geology, Colby distributions, and geochemistry College, Waterville, Maine, USA, 3Climate Change Institute, University of Maine, Orono, Maine, USA, 4School of Earth and distinguish this midlatitude eruption Climate Sciences, University of Maine, Orono, Maine, USA, 5Department of Earth and Space Sciences, University of from low- and high-latitude eruptions Washington, Seattle, Washington, USA, 6New Mexico Bureau of Geology and Mineral Resources, Socorro, New Mexico, USA Supporting Information: • Supporting Information S1 Abstract The Volcanic Explosivity Index 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and Correspondence to: deposition of sulfate and ash from a midlatitude volcano to the Antarctic ice sheet. We present sulfate, B. G. Koffman, [email protected] microparticle concentrations of fine-grained (~5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn.
    [Show full text]
  • Antarctic Peninsula
    Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno.
    [Show full text]
  • Level 1 Geography (91010) 2020
    91010R 1 Level 1 Geography 2020 91010 Apply concepts and basic geographic skills to demonstrate understanding of a given environment 2.00 p.m. Wednesday 18 November 2020 Credits: Four RESOURCE BOOKLET Refer to this booklet to answer the questions for Geography 91010. Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank. YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION. © New Zealand Qualifications Authority, 2020. All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the New Zealand QualificationsAuthority. 2 RESOURCE A: Introducing Ross Island, Antarctica Ross Island is located in Antarctica. The island has been formed by four volcanoes, and the largest of these, Mt Erebus, is the world’s southernmost active volcano. Ross Island is extremely important to New Zealand as it is home to Scott Base, New Zealand’s scientific research station in Antarctica. Scott Base was established at the island’s southern point – Hut Point Peninsula – by Edmund Hillary in 1957. Scott Base is run by Antarctica New Zealand, and its main function is to support scientists as they carry out their vital research on the continent over the summer months. New Zealand has a close relationship with the USA’s McMurdo Station, which is located nearby. During the winter months the island is in Research complete 24-hour darkness and temperatures can drop to –36 °C, which makes outside activities extremely dangerous. Ross Island played a significant part in the incredible exploration era of the early 1900s, when famous explorers such as Robert Scott and Ernest Shackleton used the island as a base as they tried to be the first to reach the South Pole.
    [Show full text]
  • Station Sharing in Antarctica
    IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts).
    [Show full text]
  • Mcmurdo Dry Valleys, Southern Victoria Land
    Measure 1 (2004) Annex Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas.
    [Show full text]
  • CCN Measurements at the Princess Elisabeth Antarctica Research
    bs CCN measurements at the Princess Elisabeth Antarctica Research Station during three austral summers Paul Herenz1, Heike Wex1, Alexander Mangold2, Quentin Laffineur2, Irina V. Gorodetskaya3,4, Zoë L. Fleming5, Marios Panagi5, and Frank Stratmann1 1Leibniz Institute for Tropospheric Research, Leipzig, Germany 2Royal Meteorological Institute of Belgium, Brussels, Belgium 3Centre for Environmental and Marine Studies, Department of Physics, University of Aveiro, Aveiro, Portugal 4Department of Earth and Environmental Sciences, KU Leuven, Belgium 5National Centre for Atmospheric Science, Department of Chemistry, University of Leicester, Leicester, UK Correspondence to: Heike Wex ([email protected]) Abstract. For three austral summer seasons (2013-2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE), in Dronning Maud Land in East Antarctica were characterized. in terms 5 ofThis included number concentrations of total aerosol particles (NCN) and cloud condensation nuclei (NCCN), the particle number size distribution (PNSD), the aerosol particle hygroscopicity and the influence of the air mass origin on NCN and −3 −3 NCCN. In general NCN was found to range from 40 to 6700 cm with a median of 333 cm , while NCCN was found to cover a range between less than 10 and 1300 cm−3 for supersaturations (SS) between 0.1 and 0.7 %. It is shown that the aerosol is Aitken mode dominated and is , being characterized by a significant amount of freshly, small, and therefore likely secondarily
    [Show full text]
  • The Antarctic Treaty
    The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
    Atmos. Chem. Phys., 7, 4329–4373, 2007 www.atmos-chem-phys.net/7/4329/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics An overview of snow photochemistry: evidence, mechanisms and impacts A. M. Grannas1, A. E. Jones2, J. Dibb3, M. Ammann4, C. Anastasio5, H. J. Beine6, M. Bergin7, J. Bottenheim8, C. S. Boxe9, G. Carver10, G. Chen11, J. H. Crawford11, F. Domine´12, M. M. Frey12,13, M. I. Guzman´ 9,14, D. E. Heard15, D. Helmig16, M. R. Hoffmann9, R. E. Honrath17, L. G. Huey18, M. Hutterli2, H. W. Jacobi19, P. Klan´ 20, B. Lefer29, J. McConnell21, J. Plane15, R. Sander22, J. Savarino12, P. B. Shepson23, W. R. Simpson24, J. R. Sodeau25, R. von Glasow26, 27, R. Weller19, E. W. Wolff2, and T. Zhu28 1Department of Chemistry, Villanova University, Villanova, PA 19085, USA 2British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK 3Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA 4Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland 5Department of Land, Air & Water Resources, University of California at Davis, Davis, CA 95616, USA 6Consiglio Nazionale delle Ricerche – Istituto Inquinamento Atmosferico (C.N.R. – I.I.A); Via Salaria Km 29,3; 00016 Monterotondo Scalo, Roma, Italy 7School of Civil and Environmental Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 8Air Quality Research Branch,
    [Show full text]