Download (Pdf, 236
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wastewater Treatment in Antarctica
Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14 -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Rapid Cenozoic Glaciation of Antarctica Induced by Declining
letters to nature 17. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, Early Cretaceous6, yet is thought to have remained mostly ice-free, 1313–1317 (2001). 18. Chen, C.-L. Elements of Optoelectronics and Fiber Optics (Irwin, Chicago, 1996). vegetated, and with mean annual temperatures well above freezing 4,7 19. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and until the Eocene/Oligocene boundary . Evidence for cooling and polarization sensitive photodetectors from single indium phosphide nanowires. Science 293, the sudden growth of an East Antarctic Ice Sheet (EAIS) comes 1455–1457 (2001). from marine records (refs 1–3), in which the gradual cooling from 20. Bagnall, D. M., Ullrich, B., Sakai, H. & Segawa, Y. Micro-cavity lasing of optically excited CdS thin films at room temperature. J. Cryst. Growth. 214/215, 1015–1018 (2000). the presumably ice-free warmth of the Early Tertiary to the cold 21. Bagnell, D. M., Ullrich, B., Qiu, X. G., Segawa, Y. & Sakai, H. Microcavity lasing of optically excited ‘icehouse’ of the Late Cenozoic is punctuated by a sudden .1.0‰ cadmium sulphide thin films at room temperature. Opt. Lett. 24, 1278–1280 (1999). rise in benthic d18O values at ,34 million years (Myr). More direct 22. Huang, Y., Duan, X., Cui, Y. & Lieber, C. M. GaN nanowire nanodevices. Nano Lett. 2, 101–104 (2002). evidence of cooling and glaciation near the Eocene/Oligocene 8 23. Gudiksen, G. S., Lauhon, L. J., Wang, J., Smith, D. & Lieber, C. M. Growth of nanowire superlattice boundary is provided by drilling on the East Antarctic margin , structures for nanoscale photonics and electronics. -
Antarctic Peninsula Basecamp Voyages Trip Notes 2021/22
ANTARCTIC PENINSULA BASECAMP VOYAGES 2021/22 TRIP NOTES ANTARCTIC PENINSULA BASECAMP VOYAGES TRIP NOTES 2021/22 EXPEDITION DETAILS Dates: Trip 1: November 11–23, 2021 Trip 2: December 22 to January 3, 2022 Trip 3: January 3–15, 2022 Trip 4: February 24 to March 8, 2022 Trip 5: March 8–20, 2022 Duration: 13 days Departure: ex Ushuaia, Argentina Price: From US$8,500 per person Weddell Seal. Photo: Ali Liddle Antarctica is seen by many as the ‘Last Frontier’ due to its remote location and difficulty of access; this is a destination very few people have the opportunity to experience. We cross the Drake Passage in our comfortable ship before it becomes our Base Camp for daily activities such as hiking, snowshoeing, kayaking, camping, glacier walking, photo workshops and landings ashore. There is something for everyone and is an opportunity to discover Antarctica at a range of different activity levels. walks across he Antarctic landscapes, photographers to TRIP OVERVIEW explore photo opportunities, campers to enjoy life at shore base camps, kayakers to explore nearby shores, Our Antarctic journeys begin in Ushuaia, Tierra del where the ship cannot go. Passengers who do not wish Fuego, on the southern tip of Argentina. Ushuaia is to be physically active will enjoy our zodiac excursions a bustling port town and its 40,000 inhabitants are and follow the normal shore program and land nestled between the cold mountains and an even excursions—easy to moderate walks and hikes with a colder sea. ‘Downtown’ has plenty of shops including focus on wildlife. internet cafés, cafés, clothes shops, chemists and an array of good restaurants. -
THE POLAR RECORD Editor: L
THE POLAR RECORD Editor: L. M. Forbes. Editorial Committee: B. B. Roberts, G. de Q. Robin, Sir J. M. Wordie Vol. 9 January 1959 No. 61 CONTENTS The Scott Polar Research Institute page 297 ARTICLES : The Canadian Northern Insect Survey, 1947-57. By T. N. Freeman 299 Recent economic developments in northern Quebec and Labrador. By J. Brian Bird . 308 Iron ore in Arctic Europe. By P. A. B. Gethin .... 314 Geodetic survey of northern Canada by shoran trilateration. By Angus C. Hamilton 320 The manuscript collection of the Scott Polar Research Institute. By Ann Savours .......... 331 FIELD WORK: British expedition to Vestspitsbergen, 1956 . • . 336 French expedition to central Greenland, 1956-57 .... 336 British expedition to north-west Greenland, 1957 .... 336 Soviet Arctic expeditions, 1957 337 The Northern Sea Route in 1957 337 Swedish-Finnish-Swiss International Geophysical Year Expedition to Nordaustlandet, 1957-58; and Swedish Expedition to Nordaust- landet, 1958-59: Season 1957-58. ...... 338 Swedish Glaciological Expedition to Nordaustlandet, 1958 . 339 Under-ice crossing of the Arctic basin: U.S.S. Nautilus and U.S.S. Skate, 1958 340 . Arctic Institute Greenland Expedition, 1958 341 British naval hydrographic surveys in the Falkland Islands Depen- dencies, 1956-57 and 1957-58 '. 341 The Australian automatic weather station on Lewis Islet, Wilkes Land 342 Anglo-American physiological team in Ross Dependency, 1957-58 . 343 NOTES : Extension of International Geophysical Year activities into 1959 . 345 Norwegian-Soviet sealing agreement, 1958 ..... 845 Tenth meeting of the International Whaling Commission, 1958 . 349 New Soviet ice-strengthened ships 350 New geographical institute in Siberia 350 ig Pit 296 CONTENTS NOTES (cont.) Soviet organizations concerned with the Antarctic . -
Amazing Antarctica – Lesson 6
Year 8 GEOGRAPHY – Ecosystems – Amazing Antarctica – Lesson 6 Title: Ecosystems – Amazing Antarctica TASK 1: write down the following WOW words. As you go through the information, write the definition for each word (you might find some of the definitions as you work through the booklet). • Precipitation = • Albedo = • Ice sheet = • Glaciers = • Food chain = TASK 2: where is Antarctica? Use the following sentence starters and complete them to explain where Antarctica is located around the world. • Antarctica is located at the _________________ pole. • Antarctica is a country/continent/city. • Nearby countries include ______________________. • The oceans that surround Antarctica are __________________________. TASK 3: watch the video and write down facts about Antarctica https://www.youtube.com/watch?v=X3uT89xoKuc Antarctica TASK 4: what is the climate like in Antarctica? Read through the information below and answer the questions in red. Climate of Antarctica Antarctica can be called a desert because of its low levels of precipitation, which is mainly snow. In coastal regions, about 200 mm can fall annually. In mountainous regions and on the East Antarctica plateau, the amount is less than 50 mm annually. Evaporation is not as high as other desert regions because it is so cold, so the snow gradually builds up year after year. There are also strong winds, with recordings of up to 200 mph being made. Antarctica's seasons are opposite to the seasons that we're familiar with in the UK. Antarctic summers happen at the same time as UK winters. This is because Antarctica is in the Southern Hemisphere, which faces the Sun during our winter time. -
Educator's Guide
SOUTH POLE Amundsen’s Route Scott’s Route Roald Amundsen EDUCATOR’S GUIDE amnh.org/education/race Robert Falcon Scott INSIDE: • Suggestions to Help You Come Prepared • Essential Questions for Student Inquiry • Strategies for Teaching in the Exhibition • Map of the Exhibition • Online Resources for the Classroom • Correlation to Standards • Glossary ESSENTIAL QUESTIONS Who would be fi rst to set foot at the South Pole, Norwegian explorer Roald Amundsen or British Naval offi cer Robert Falcon Scott? Tracing their heroic journeys, this exhibition portrays the harsh environment and scientifi c importance of the last continent to be explored. Use the Essential Questions below to connect the exhibition’s themes to your curriculum. What do explorers need to survive during What is Antarctica? Antarctica is Earth’s southernmost continent. About the size of the polar expeditions? United States and Mexico combined, it’s almost entirely covered Exploring Antarc- by a thick ice sheet that gives it the highest average elevation of tica involved great any continent. This ice sheet contains 90% of the world’s land ice, danger and un- which represents 70% of its fresh water. Antarctica is the coldest imaginable physical place on Earth, and an encircling polar ocean current keeps it hardship. Hazards that way. Winds blowing out of the continent’s core can reach included snow over 320 kilometers per hour (200 mph), making it the windiest. blindness, malnu- Since most of Antarctica receives no precipitation at all, it’s also trition, frostbite, the driest place on Earth. Its landforms include high plateaus and crevasses, and active volcanoes. -
Station Sharing in Antarctica
IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts). -
Mount Harding, Grove Mountains, East Antarctica
MEASURE 2 - ANNEX Management Plan for Antarctic Specially Protected Area No 168 MOUNT HARDING, GROVE MOUNTAINS, EAST ANTARCTICA 1. Introduction The Grove Mountains (72o20’-73o10’S, 73o50’-75o40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°512 -72°572 S, 74°532 -75°122 E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the past climatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc. -
Development Pressures on the Antarctic Wilderness
XXVIII ATCM – IP May 2004 Original: English Agenda Items 3 (Operation of the CEP) and 4a (General Matters) DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS Submitted to the XXVIII ATCM by the Antarctic and Southern Ocean Coalition DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS 1. Introduction In 2004 the Antarctic and Southern Ocean Coalition (ASOC) tabled information paper ATCM XXVII IP 094 “Are new stations justified?”. The paper highlighted proposals for the construction of no less than five new Antarctic stations in the context of at least 73 established stations (whether full year or summer only), maintained by 26 States already operating in the Antarctic Treaty Area. The paper considered what was driving the new station activity in Antarctica, whether or not it was necessary or desirable, and what alternatives there might be to building yet more stations. Whilst IP 094 focused on new station proposals, it noted that there were other significant infrastructure projects underway in Antarctica, which included substantial upgrades of existing national stations, the development of air links to various locations in Antarctica and related runways, and an ice road to the South Pole. Since then, ASOC has become aware of additional proposals for infrastructure projects. This paper updates ASOC’s ATCM XXVII IP 094 to include most infrastructure projects planned or currently underway in Antarctica as of April 2005, and discusses their contribution to cumulative impacts. The criteria used to select these projects are: 1. The project’s environmental impact is potentially “more than minor or transitory”; 2. The project results in a development of infrastructure that is significant in the Antarctic context; 3. -
GSA TODAY • Southeastern Section Meeting, P
Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.