Ice Core Science

Total Page:16

File Type:pdf, Size:1020Kb

Ice Core Science PAGES International Project Offi ce Sulgeneckstrasse 38 3007 Bern Switzerland Tel: +41 31 312 31 33 Fax: +41 31 312 31 68 [email protected] Text Editing: Leah Christen News Layout: Christoph Kull Hubertus Fischer, Christoph Kull and Circulation: 4000 Thorsten Kiefer, Editors VOL.14, N°1 – APRIL 2006 Ice Core Science Ice cores provide unique high-resolution records of past climate and atmospheric composition. Naturally, the study area of ice core science is biased towards the polar regions but ice cores can also be retrieved from high .pages-igbp.org altitude glaciers. On the satellite picture are those ice cores covered in this issue of PAGES News (Modifi ed image of “The Blue Marble” (http://earthobservatory.nasa.gov) provided by kk+w - digital cartography, Kiel, Germany; Photos by PNRA/EPICA, H. Oerter, V. Lipenkov, J. Freitag, Y. Fujii, P. Ginot) www Contents 2 Announcements - Editorial: The future of ice core research - Dating of ice cores - Inside PAGES - Coastal ice cores - Antarctica - New on the bookshelf - WAIS Divide ice core - Antarctica - Tales from the fi eld - ITASE project - Antarctica - In memory of Nick Shackleton - New Dome Fuji ice core - Antarctica - Vostok ice drilling project - Antarctica 6 Program News - EPICA ice cores - Antarctica - The IPICS Initiative - 425-year precipitation history from Italy - New sea-fl oor drilling equipment - Sea-level changes: Black and Caspian Seas - Relaunch of the PAGES Databoard - Quaternary climate change in Arabia 12 National Page 40 Workshop Reports - Chile - 2nd Southern Deserts Conference - Chile - Climate change and tree rings - Russia 13 Science Highlights - Global climate during MIS 11 - Greece - NGT and PARCA ice cores - Greenland - NorthGRIP ice core - Greenland 44 Last Page - Reconstructions from Alpine ice cores - Calendar - Tropical ice cores from the Andes - PAGES Guest Scientist Program ISSN 1563–0803 The PAGES International Project Offi ce and its publications are supported by the Swiss and US National Science Foundations and NOAA. 2 Announcements: Ice Core Science Editorial: Past, present and future ice core research Ice core science is still a young fi eld of paleoclimatic and atmospheric research. Essentially, it all began in the 1960s when American, Danish and Swiss researchers retrieved the fi rst deep ice core record from Camp Century, northwestern Greenland. From that point on, it has been a success story, with many national and international deep ice core projects changing our view of the Earth’s climate system. The documentation of unprecedented rapid climate variations in Greenland ice cores during the last glacial (Dansgaard-Oeschger events, named after two pioneers in ice core research), and the quantitative reconstruction of greenhouse gas concentrations from air bubbles enclosed in the ice, are just two of the most striking examples of how ice core science has advanced our knowledge. The success of ice cores alongside other outstanding paleoclimatic archives, such as marine and lake sedi- ments, tree rings, corals, etc., stems from their high temporal resolution combined with their coverage of many glacial cycles. In addition, the combination of various climatological and atmospheric data streams (temperature, gases, aerosols, etc.) from the same independently dated archive make ice cores extremely valuable. Despite its rather short history, ice core science has gained huge momentum and had a very strong impact on paleoclimatology. It 500 has reached full speed only within the last decade, as refl ected by the extraordinary development of the publication history of ice core related papers (see Figure), which have experienced a six-fold 400 increase in the last 15 years, and by the rapid multiplication of ice core drilling projects in different regions of the globe, bringing new 300 national players such as China, Korea and India into the game. High time to bring together the most important results gained 200 from various research groups worldwide and to think about the future. Accordingly, this issue of PAGES News givesgives anan overviewoverview ofof the results of many of the major ongoing ice core projects, reach- 100 ing spatially from the poles to the equator and temporally from No. of publications/year recent climate variability to paleoclimatology over the last 800,000 0 years. The need to look ahead and shape the future of ice core sci- 1984 1992 2000 2008 ence in multinational collaborations has long been recognized. In Year the last two years, this has led to the “International Partnerships in Figure: Publication history of papers with Ice Core Sciences (IPICS)”, an open planning body of currently 18 the keyword “ice core” from 1987-2005. nations that has identifi ed the most important scientifi c questions Information was retrieved from SCOPUS (www.scopus.com/scopus/home.url). to be addressed in future ice core projects. These questions have been channeled into four IPICS white papers (www.pages-igbp. org/science/initiatives/ipics/), which are also summarized in this issue of PAGES news. The timing of this newsletter is also fi tting, considering the upcoming International Polar Year (IPY). IPY will be the starting line for many of these future ice core projects, which will keep us glaciologists busy for another 10-20 years, and will provide the paleoclimate community with more detailed, quantitative and potentially paradigm-changing ice core results. HUBERTUS FISCHER PAGES Guest Editor Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany hufi [email protected] ��������������������������������������������������� ������������������ ������ ����� ��� ����� ���������� ���������������� ��� ���� ���������� ��� ���� �������� ������������ ��� ����� ����� ���� ��� ������ ����� ����� �� ���� ������ ��� ����������� ����� ���� ����� ��� ���� �������� ������ ���� ���� ��������� �� ����� ��� ������ ����������� �������� ����� ��� ���� ������ ����� ��� ����� ��� ���� ���� �������� ��������� ���������������������������������������������������������������� PAGES NEWS, VOL.14, N°1, APRIL 2006 Announcements 3 contributions to PAGES during their Ababa. He has been active in PAGES time on the committee especially as the PEP III African Coordinator. Inside PAGES in building the community in their Cathy Whitlock (USA), a paleoecolo- home countries, and we gratefully gist, is Professor of Earth Sciences at acknowledge their help and dedica- Montana State University. She has Lately, the PAGES IPO has been tion. An open call for nominations important links to the modeling and buzzing with visitors. Denis-Didier for one additional SSC member will paleo-ecology communities. Rousseau (France) spent a week at close 15 September 2006. We partic- the IPO preparing a Loess-dust activ- ularly encourage nominations of pa- PAGES jobs database ity, Hubertus Fischer (Germany) was leoscientists from Russia and former PAGES free online listing of paleosci- in the offi ce to guest-edit this spe- Soviet Union countries, since this ence jobs has just been expanded to cial issue and work on the new IPICS geographic region is currently under- include a quick and simple form for website, Isabelle Larocque (Canada) represented on the SSC. For details you to add your job offer directly to is helping to establish a new PAG- on the nomination procedure, please the jobs page. Jobs are divided into ES Databoard Working Group and go to: www.pages-igbp.org/people/ categories (PhD, faculty, etc.) and meeting, Dmitry Sonechkin (Rus- sscleaders/nominations.html. will be posted the same day. Post or sia) discussed a contribution to the search for jobs at: www.pages-igbp. PAGES/CLIVAR Intersection, Olga Incoming PAGES SSC members org/services/jobs/. Solomina (Russia) will help to guest- PAGES welcomes four new mem- edit a GPC specialspecial issueissue onon climateclimate bers to its SSC this year. Bette Next issue of PAGES News change in mountain regions, and Otto-Bliesner (USA) is Head of the The next issue of the PAGES news- Bert Rein (Germany) will be here to Paleoclimate Group at NCAR and letter will be published in July. set up the National PAGES Germany Lead Author of the IPCC paleoclimate Please send your general contribu- website. More information about chapter. She brings knowledge and tions to the open section, as well PAGES Guest Scientist Program can experience of climate modeling to as program news, workshop re- be found at: www.pages-igbp.org/ the SSC. Indra Bir Singh (India) is ports and humorous tales from the people/guestscientists.html. Professor of Geology at the Universi- fi eld, to Christoph Kull (kull@pages. ty of Lucknow. He has a background unibe.ch) by 15 May. Guidelines Outgoing PAGES SSC members in terrestrial paleoenvironmental for contributions can be found at At the end of 2005, PAGES Scientifi c science and brings new expertise in www.pages-igbp.org/products/ Steering Committee said farewell to sedimentology to the SSC. Moham- newsletters/instructions.html. Daniel Olago (Kenya), Ashok Singhvi med Umer (Ethiopia), a palynolo- (India), and Olga Solomina (Russia). gist, is Associate Professor of Earth All three members made enormous Sciences at the University of Addis HOLIVAR 2006 Open Science Meeting: Natural Climate Variability and Global Warming 12 - 15 June 2006; Environmental Change Research Centre, University College London, UK The meeting will examine how and why the natural climate system varies and assess the relative importance of natural processes and human activity in explaining global warming. Meeting Themes: The HOLIVAR2006
Recommended publications
  • Layering of Surface Snow and Firn at Kohnen Station, Antarctica – Noise Or Seasonal Signal?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Confidential manuscript submitted to replace this text with name of AGU journalprovided by Electronic Publication Information Center Layering of surface snow and firn at Kohnen Station, Antarctica – noise or seasonal signal? Thomas Laepple1, Maria Hörhold2,3, Thomas Münch1,5, Johannes Freitag4, Anna Wegner4, Sepp Kipfstuhl4 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany 2Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, D-28359 Bremen 3now at Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 4Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 5Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Corresponding author: Thomas Laepple ([email protected]) Extensive dataset of vertical and horizontal firn density variations at EDML, Antarctica Even in low accumulation regions, the density in the upper firn exhibits a seasonal cycle Strong stratigraphic noise masks the seasonal cycle when analyzing single firn cores Abstract The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data.
    [Show full text]
  • Sea Ice Engineering
    Sea Ice Engineering theory and application Claude Daley Sea Ice Engineering 2017 –Notes ii © Claude G. Daley 2017 With components developed by D.B.Colbourne and B.W.T. Quinton All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. This draft is solely for the use of students registered in EN8074 and EN9096, in Winter 2016. All enquiries to: C.G. Daley Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John’s Newfoundland and Labrador Canada A1B 3X5 Email: [email protected] Note: images, sketches and photo's are © C. Daley unless otherwise noted Cover image by C. Daley from GEM Simulation Program Sea Ice Engineering 2017 –Notes iii …………………………………… Contents Acknowledgments ........................................................................................................................... vi 1 Introducing Arctic Offshore Engineering ................................................................................ 1 1.1 Overview ......................................................................................................................... 1 1.2 Basics .............................................................................................................................. 1 1.3 Current Arctic Engineering Activities ............................................................................ 3 1.4 Transportation ................................................................................................................. 4 1.4.1
    [Show full text]
  • Rapid Access Ice Drill: a New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology
    Journal of Glaciology (2016), Page 1 of 16 doi: 10.1017/jog.2016.97 © The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Rapid Access Ice Drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology JOHN W. GOODGE,1 JEFFREY P. SEVERINGHAUS2 1Department of Earth and Environmental Sciences, University of Minnesota, Duluth, MN 55812, USA 2Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92093, USA Correspondence: John W. Goodge <[email protected]> ABSTRACT. A new Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to create borehole observatories and take cores in deep ice, the glacial bed and bedrock below. RAID is a mobile drilling system to make multiple long, narrow boreholes in a single field season in Antarctica. RAID is based on a mineral exploration-type rotary rock-coring system using threaded drill pipe to cut through ice using reverse circulation of a non-freezing fluid for pressure-compensation, maintenance of temperature and removal of ice cuttings. Near the bottom of the ice sheet, a wireline latching assem- bly will enable rapid coring of ice, the glacial bed and bedrock below. Once complete, boreholes will be kept open with fluid, capped and available for future down-hole measurement of temperature gradient, heat flow, ice chronology and ice deformation. RAID is designed to penetrate up to 3300 m of ice and take cores in <200 hours, allowing completion of a borehole and coring in ∼10 d at each site.
    [Show full text]
  • Polar Ice Coring and IGY 1957-58 in This Issue
    NEWSLETTER OF T H E N A T I O N A L I C E C O R E L ABORATORY — S CIE N C E M A N AGE M E N T O FFICE Vol. 3 Issue 1 • SPRING 2008 Polar Ice Coring and IGY 1957-58 In this issue . An Interview with Dr. Anthony J. “Tony” Gow Polar Ice Coring and IGY 1957-58 From the early 1950’s through the mid-1960’s, U.S. polar ice coring research was led by two U.S. Army An Interview with Dr. Tony Gow .... 1 Corps of Engineers research labs: the Snow, Ice, and Permafrost Research Establishment (SIPRE), and Upcoming Meetings ...................... 2 later, the Cold Regions Research and Engineering Laboratory (CRREL). One of the high-priority research Greenland Science projects recommended by the U.S. National Academy of Sciences/National Committee for IGY 1957-58 and Education Week ..................... 3 was to deep core drill into polar ice sheets for scientific purposes. To this end, SIPRE was tasked with Ice Core Working Group developing and running the entire U.S. ice core drilling and research program. Following the successful Members ....................................... 3 pre-IGY pilot drilling trials at Site-2 NW Greenland in 1956 (305 m) and 1957 (411 m), the SIPRE WAIS Divide turned their attention to deep ice core drilling in Antarctica for IGY 1957-58. Dr. Anthony J. (Tony) Ice Core Update ............................ 5 Gow (CRREL, retired) was one of the scientists on the project. In March 2008, the NICL-SMO had Ice Cores and POLAR-PALOOZA the opportunity to sit down with Dr.
    [Show full text]
  • Continental-Scale Links Between the Mantle and Groundwater Systems of the Western United States: Evidence from Travertine Springs and Regional He Isotope Data
    VOL. 15, No. 12 A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICa DECEMBER 2005 Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data Inside: Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data, by DENNIS L. NEWEll, LAURA J. CROSSEY, KARL E. KARLSTROM, TOBIAS P. FISCHER, AND DAVID R. HILTON, p. 4 Section Meetings: Northeastern, p. 14 Southeastern, p. 20 South-Central, p. 27 le re sab fer e i r d e s n o I u r c e s tectonics, petrology, mantle dynamics, impacts, and syntheses reconcil- Plates, Plumes, and Paradigms ing several branches of earth science. Included are chapters that advocate edited by Gillian R. Foulger, James H. Natland, Dean C. Presnall, the plume model and ones that advocate alternative models. The book and Don L. Anderson will enjoy a long lifetime of usefulness and functions as a reference work for students, scholars, and informed lay people. It is equally valuable This beautiful compendium of work on hotspot volcanism documents the for supporting advanced undergraduate or post-graduate courses and re- development, current state-of-play, and future prospects of all branches search scientists working at the forefront of hotspot science. It is an es- of the subject. It contains extensive and indispensable reference resources sential addition to the bookshelves of every science library, earth science in the form of hotspot, tectonic, volcano and tomographic maps and cross teacher, and research scientist who aspires to understand the frontiers of sections of Earth.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Ice Core Drilling and Subglacial Lake Studies on the Temperate Ice Caps in Iceland
    Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Iceland astride the Mid-Atlantic ridge Lecture # 36 Astrobiology Winter School Ice drilling projects in Iceland University of Hawaii, Jan. 2005 Thorsteinn Thorsteinsson ([email protected]) National Energy Authority Ice cover during the late glacial period. Combination of hot spot volcanism, spreading on the Mid-Atlantic ridge and glaciation leads to unusual geology. From Thordarson and Höskuldsson (2003). Subglacial volcanism beneath an ice sheet creates unusual landforms: Tuyas (tablemountains) and ridges. Herðubreið, N-Iceland Submarine eruptions create similar formations. Biologicial colonization monitored from the beginning Surtsey eruption, S. of Iceland, 1963-1967. Recent subglacial eruption in Grímsvötn, Vatnajökull ice cap. Jökulsárgljúfur canyons, N. Iceland: Formed in a catastrophic flood from Vatnajökull 2500 years ago. Icelandic analogs to hillside gullies on Mars Mars Mars Iceland Iceland Iceland Temperate ice caps Hofsjökull, 890 km2 cover >10% of Iceland Vatnajökull 2 Langjökull 8000 km 2 920 km Max. thickness: 950 m Mýrdalsjökull 550 km2 - Dynamic ice caps in a maritime climate. - High accumulation rates (2-4 m w.eq. yr-1) - Extensive melting during summer, except at highest elevations (> 1800 m) - Mass balance of ice caps negative since 1995 1972: A 415 m ice core was drilled on the NW-part of Vatnajökull Activities not continued at that time, drill was discarded. Mass balance of Hofsjökull Ice Cap 4 2 0 Winter balance -2 Summer balance H2O Net balance m -4 Cumulative mass balance -6 -8 -10 1987 1992 1997 2002 Climate, Water, Energy: A research project investigating the effect of climate change on energy production in the Nordic countries Temperature increase 1990-2050 °C CWE uses IPCC data to create scenarios for temperature and precipitation change in the Nordic region in the future Modelled change in volume of Hofsjökull ice cap 2000-2002, Modelled glacial meltwater using four different dT and dP discharge (run-off) 2000-2200.
    [Show full text]
  • Lakes in Winter
    NORTH AMERICAN LAKE NONPROFIT ORG. MANAGEMENT SOCIETY US POSTAGE 1315 E. Tenth Street PAID Bloomington, IN 47405-1701 Bloomington, IN Permit No. 171 Lakes in Winter in Lakes L L INE Volume 34, No. 4 • Winter 2014 Winter • 4 No. 34, Volume AKE A publication of the North American Lake Management Society Society Management Lake American North the of publication A AKE INE Contents L L Published quarterly by the North American Lake Management Society (NALMS) as a medium for exchange and communication among all those Volume 34, No. 4 / Winter 2014 interested in lake management. Points of view expressed and products advertised herein do not necessarily reflect the views or policies of NALMS or its Affiliates. Mention of trade names and commercial products shall not constitute 4 From the Editor an endorsement of their use. All rights reserved. Standard postage is paid at Bloomington, IN and From the President additional mailing offices. 5 NALMS Officers 6 NALMS 2014 Symposium Highlights President 11 2014 NALMS Awards Reed Green Immediate Past-President 15 2014 NALMS Photo Contest Winners Terry McNabb President-Elect 16 2014 NALMS Election Results Julie Chambers Secretary Sara Peel Lakes in Winter Treasurer Michael Perry 18 Lake Ice: Winter, Beauty, Value, Changes, and a Threatened NALMS Regional Directors Future Region 1 Wendy Gendron 28 Fish in Winter – Changes in Latitudes, Changes in Attitudes Region 2 Chris Mikolajczyk Region 3 Imad Hannoun Region 4 Jason Yarbrough 32 A Winter’s Tale: Aquatic Plants Under Ice Region 5 Melissa Clark Region 6 Julie Chambers 38 A Winter Wonderland . of Algae Region 7 George Antoniou Region 8 Craig Wolf 44 Water Monitoring Region 9 Todd Tietjen Region 10 Frank Wilhelm 48 Winter Time Fishery at Lake Pyhäjärvi Region 11 Anna DeSellas Region 12 Ron Zurawell At-Large Nicki Bellezza Student At-Large Ted Harris 51 Literature Search LakeLine Staff Editor: William W.
    [Show full text]
  • UNIVERSIDADE DE SÃO PAULO - USP Faculdade De Filosofia Letras E Ciências Humanas Departamento De Geografia Programa De Pós-Graduação Em Geografia Física
    UNIVERSIDADE DE SÃO PAULO - USP Faculdade de Filosofia Letras e Ciências Humanas Departamento de Geografia Programa de Pós-Graduação em Geografia Física NEWTON MONTEIRO DE CAMPOS JÚNIOR ELEMENTOS PARA UM DEBATE SOBRE O CLIMA NO ÉON FANEROZOICO . São Paulo 2017 NEWTON MONTEIRO DE CAMPOS JÚNIOR ELEMENTOS PARA UM DEBATE SOBRE O CLIMA NO ÉON FANEROZOICO Dissertação apresentada ao Programa de Pós-Graduação em Geografia Física, do Departamento de Geografia da Universidade de São Paulo para a obtenção do grau de Mestre em Geografia Física. Orientador: Prof. Dr. Luís Antonio Bittar Venturi. São Paulo 2017 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. Catalogação na Publicação Serviço de Biblioteca e Documentação Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo Campos Jr, Newton Monteiro de C198e Elementos para um debate sobre o clima no Éon Fanerozoico / Newton Monteiro de Campos Jr ; orientador Luís Antônio Bittar Venturi. - São Paulo, 2017. 128 f. Dissertação (Mestrado)- Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo. Departamento de Geografia. Área de concentração: Geografia Física. 1. Variabilidade Climática. 2. Dinâmica Geomorfológica. 3. Paleoclimatologia. 4. Paleogeografia. 5. Fanerozoico. I. Venturi, Luís Antônio Bittar, orient. II. Título. CAMPOS JR., NEWTON M. Elementos para um debate sobre o clima no Éon Fanerozoico. Dissertação apresentada ao Programa de Pós-Graduação em Geografia Física, do Departamento de Geografia da Universidade de São Paulo para a obtenção do grau de Mestre em Geografia Física. Aprovado em: ______/______/______ Prof.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • Antarctic Treaty
    ANTARCTIC TREATY REPORT OF THE NORWEGIAN ANTARCTIC INSPECTION UNDER ARTICLE VII OF THE ANTARCTIC TREATY FEBRUARY 2009 Table of Contents Table of Contents ............................................................................................................................................... 1 1. Introduction ................................................................................................................................................... 2 1.1 Article VII of the Antarctic Treaty .................................................................................................................... 2 1.2 Past inspections under the Antarctic Treaty ................................................................................................... 2 1.3 The 2009 Norwegian Inspection...................................................................................................................... 3 2. Summary of findings ...................................................................................................................................... 6 2.1 General ............................................................................................................................................................ 6 2.2 Operations....................................................................................................................................................... 7 2.3 Scientific research ..........................................................................................................................................
    [Show full text]
  • Study of the Land Surface
    02-Gregory-4013-CH-02:Gregory-4013-CH-02 04/01/2010 10:33 AM Page 17 2 STUDY OF THE LAND SURFACE In the last chapter it was suggested that study of the surface of the earth may have been associated with disciplines whose prime purpose often lies elsewhere. 2.1 Disciplines for the land surface A discipline is defined by the Oxford English Dictionary as ‘a branch of learning or scholarly instruction’. Instruction is provided in programmes of study which effectively create the academic world inhabited by scholars. Academic disciplines are often regarded as branches of knowledge taught and researched at higher education level, recognized by the academic journals in which research is published and by the learned societies and university departments to which practitioners belong. Although it is useful for academics to distinguish between disciplines, between geology and geography for example, one individual may not understand why the distinction is necessary or why there are differences in approach. Differences between disciplines can be reinforced by syllabi in schools and univer- sities, or by the content of journals and books, and it has been suggested (Martin, 1998) that the way in which knowledge is organized and divided can be the sub- ject of a power struggle so that confrontations almost like tribal wars may develop between disciplines! Against this background it is understandable why Rhodes (Rhodes and Stone, Rhodes et al., 1981; 2008: xii) contended that ‘One of the problems with our conventional styles of teaching and conventional pat- terns of learning at the introductory undergraduate level is that the “subject” – whatever it may be – all too easily emerges as given, frozen, complete, canned’.
    [Show full text]