Polar Ice Coring and IGY 1957-58 in This Issue
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mcmurdo STATION MODERNIZATION STUDY Building Shell & Fenestration Study
McMURDO STATION MODERNIZATION STUDY Building Shell & Fenestration Study April 29, 2016 Final Submittal MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 2 TABLE OF CONTENTS Section 1: Overview PG. 7-51 Team Directory PG. 8 Project Description PG. 9 Methodology PG. 10-11 Design Criteria/Environmental Conditions PG. 12-20 (a) General Description (b) Environmental Conditions a. Wind b. Temp c. RH d. UV e. Duration of sunlight f. Air Contaminants (c) Graphic (d) Design Criteria a. Thermal b. Air Infiltration c. Moisture d. Structural e. Fire Safety f. Environmental Impact g. Corrosion/Degradation h. Durability i. Constructability j. Maintainability k. Aesthetics l. Mechanical System, Ventilation Performance and Indoor Air Quality implications m. Structural implications PG. 21-51 Benchmarking 3 Section 2: Technical Investigation and Research PG. 53-111 Envelope Components and Assemblies PG. 54-102 (a) Components a. Cladding b. Air Barrier c. Insulation d. Vapor Barrier e. Structural f. Interior Assembly (b) Assemblies a. Roofs b. Walls c. Floors Fenestration PG. 103-111 (a) Methodology (b) Window Components Research a. Window Frame b. Glazing c. Integration to skin (c) Door Components Research a. Door i. Types b. Glazing Section 3: Overall Recommendation PG. 113-141 Total Configured Assemblies PG. 114-141 (a) Roofs a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic 4 (b) Walls a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. -
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Ice Core Science
PAGES International Project Offi ce Sulgeneckstrasse 38 3007 Bern Switzerland Tel: +41 31 312 31 33 Fax: +41 31 312 31 68 [email protected] Text Editing: Leah Christen News Layout: Christoph Kull Hubertus Fischer, Christoph Kull and Circulation: 4000 Thorsten Kiefer, Editors VOL.14, N°1 – APRIL 2006 Ice Core Science Ice cores provide unique high-resolution records of past climate and atmospheric composition. Naturally, the study area of ice core science is biased towards the polar regions but ice cores can also be retrieved from high .pages-igbp.org altitude glaciers. On the satellite picture are those ice cores covered in this issue of PAGES News (Modifi ed image of “The Blue Marble” (http://earthobservatory.nasa.gov) provided by kk+w - digital cartography, Kiel, Germany; Photos by PNRA/EPICA, H. Oerter, V. Lipenkov, J. Freitag, Y. Fujii, P. Ginot) www Contents 2 Announcements - Editorial: The future of ice core research - Dating of ice cores - Inside PAGES - Coastal ice cores - Antarctica - New on the bookshelf - WAIS Divide ice core - Antarctica - Tales from the fi eld - ITASE project - Antarctica - In memory of Nick Shackleton - New Dome Fuji ice core - Antarctica - Vostok ice drilling project - Antarctica 6 Program News - EPICA ice cores - Antarctica - The IPICS Initiative - 425-year precipitation history from Italy - New sea-fl oor drilling equipment - Sea-level changes: Black and Caspian Seas - Relaunch of the PAGES Databoard - Quaternary climate change in Arabia 12 National Page 40 Workshop Reports - Chile - 2nd Southern Deserts Conference - Chile - Climate change and tree rings - Russia 13 Science Highlights - Global climate during MIS 11 - Greece - NGT and PARCA ice cores - Greenland - NorthGRIP ice core - Greenland 44 Last Page - Reconstructions from Alpine ice cores - Calendar - Tropical ice cores from the Andes - PAGES Guest Scientist Program ISSN 1563–0803 The PAGES International Project Offi ce and its publications are supported by the Swiss and US National Science Foundations and NOAA. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Ice Core Drilling and Subglacial Lake Studies on the Temperate Ice Caps in Iceland
Ice core drilling and subglacial lake studies on the temperate ice caps in Iceland Iceland astride the Mid-Atlantic ridge Lecture # 36 Astrobiology Winter School Ice drilling projects in Iceland University of Hawaii, Jan. 2005 Thorsteinn Thorsteinsson ([email protected]) National Energy Authority Ice cover during the late glacial period. Combination of hot spot volcanism, spreading on the Mid-Atlantic ridge and glaciation leads to unusual geology. From Thordarson and Höskuldsson (2003). Subglacial volcanism beneath an ice sheet creates unusual landforms: Tuyas (tablemountains) and ridges. Herðubreið, N-Iceland Submarine eruptions create similar formations. Biologicial colonization monitored from the beginning Surtsey eruption, S. of Iceland, 1963-1967. Recent subglacial eruption in Grímsvötn, Vatnajökull ice cap. Jökulsárgljúfur canyons, N. Iceland: Formed in a catastrophic flood from Vatnajökull 2500 years ago. Icelandic analogs to hillside gullies on Mars Mars Mars Iceland Iceland Iceland Temperate ice caps Hofsjökull, 890 km2 cover >10% of Iceland Vatnajökull 2 Langjökull 8000 km 2 920 km Max. thickness: 950 m Mýrdalsjökull 550 km2 - Dynamic ice caps in a maritime climate. - High accumulation rates (2-4 m w.eq. yr-1) - Extensive melting during summer, except at highest elevations (> 1800 m) - Mass balance of ice caps negative since 1995 1972: A 415 m ice core was drilled on the NW-part of Vatnajökull Activities not continued at that time, drill was discarded. Mass balance of Hofsjökull Ice Cap 4 2 0 Winter balance -2 Summer balance H2O Net balance m -4 Cumulative mass balance -6 -8 -10 1987 1992 1997 2002 Climate, Water, Energy: A research project investigating the effect of climate change on energy production in the Nordic countries Temperature increase 1990-2050 °C CWE uses IPCC data to create scenarios for temperature and precipitation change in the Nordic region in the future Modelled change in volume of Hofsjökull ice cap 2000-2002, Modelled glacial meltwater using four different dT and dP discharge (run-off) 2000-2200. -
(Antarctica) Glacial, Basal, and Accretion Ice
CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa. -
Living and Working at USAP Facilities
Chapter 6: Living and Working at USAP Facilities CHAPTER 6: Living and Working at USAP Facilities McMurdo Station is the largest station in Antarctica and the southermost point to which a ship can sail. This photo faces south, with sea ice in front of the station, Observation Hill to the left (with White Island behind it), Minna Bluff and Black Island in the distance to the right, and the McMurdo Ice Shelf in between. Photo by Elaine Hood. USAP participants are required to put safety and environmental protection first while living and working in Antarctica. Extra individual responsibility for personal behavior is also expected. This chapter contains general information that applies to all Antarctic locations, as well as information specific to each station and research vessel. WORK REQUIREMENT At Antarctic stations and field camps, the work week is 54 hours (nine hours per day, Monday through Saturday). Aboard the research vessels, the work week is 84 hours (12 hours per day, Monday through Sunday). At times, everyone may be expected to work more hours, assist others in the performance of their duties, and/or assume community-related job responsibilities, such as washing dishes or cleaning the bathrooms. Due to the challenges of working in Antarctica, no guarantee can be made regarding the duties, location, or duration of work. The objective is to support science, maintain the station, and ensure the well-being of all station personnel. SAFETY The USAP is committed to safe work practices and safe work environments. There is no operation, activity, or research worth the loss of life or limb, no matter how important the future discovery may be, and all proactive safety measures shall be taken to ensure the protection of participants. -
West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology
WAIS DIVIDE SCIENCE COORDINATION OFFICE West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology A GUIDE FOR THE MEDIA AND PUBLIC Field Season 2011-2012 WAIS (West Antarctic Ice Sheet) Divide is a United States deep ice coring project in West Antarctica funded by the National Science Foundation (NSF). WAIS Divide’s goal is to examine the last ~100,000 years of Earth’s climate history by drilling and recovering a deep ice core from the ice divide in central West Antarctica. Ice core science has dramatically advanced our understanding of how the Earth’s climate has changed in the past. Ice cores collected from Greenland have revolutionized our notion of climate variability during the past 100,000 years. The WAIS Divide ice core will provide the first Southern Hemisphere climate and greenhouse gas records of comparable time resolution and duration to the Greenland ice cores enabling detailed comparison of environmental conditions between the northern and southern hemispheres, and the study of greenhouse gas concentrations in the paleo-atmosphere, with a greater level of detail than previously possible. The WAIS Divide ice core will also be used to test models of WAIS history and stability, and to investigate the biological signals contained in deep Antarctic ice cores. 1 Additional copies of this document are available from the project website at http://www.waisdivide.unh.edu Produced by the WAIS Divide Science Coordination Office with support from the National Science Foundation, Office of Polar Programs. 2 Contents -
1934 the MOUNTAINEERS Incorpora.Ted T�E MOUNTAINEER VOLUME TWENTY-SEVEN Number One
THE MOUNTAINEER VOLUME TWENTY -SEVEN Nom1-0ae Deceml.er, 19.34 GOING TO GLACIER PUBLISHED BY THE MOUNTAIN�ER.S INCOaPOllATBD SEATTLI: WASHINGTON. _,. Copyright 1934 THE MOUNTAINEERS Incorpora.ted T�e MOUNTAINEER VOLUME TWENTY-SEVEN Number One December, 1934 GOING TO GLACIER 7 •Organized 1906 Incorporated 1913 EDITORIAL BOARD, 1934 Phyllis Young Katharine A. Anderson C. F. Todd Marjorie Gregg Arthur R. Winder Subscription Price, $2.00 a Year Annual (only) Seventy-five Cents Published by THE MOUNTAINEERS Incorporated Seattle, Washington Entered as second class matter, December 15, 1920, at the Postofflce at Seattle, Washington, under the Act of March 3, 1879. TABLE OF CONTENTS Greeting ........................................................................Henr y S. Han, Jr. North Face of Mount Rainier ................................................ Wolf Baiter 3 r Going to Glacier, Illustrated ............... -.................... .Har iet K. Walker 6 Members of the 1934 Summer Outing........................................................ 8 The Lake Chelan Region ............. .N. W. <J1·igg and Arthiir R. Winder 11 Map and Illustration The Climb of Foraker, Illitstrated.................................... <J. S. Houston 17 Ascent of Spire Peak ............................................... -.. .Kenneth Chapman 18 Paradise to White River Camp on Skis .......................... Otto P. Strizek 20 Glacier Recession Studies ................................................H. Strandberg 22 The Mounta,ineer Climbers................................................ -
Mcmurdo Station Master Plan 2.1 December 16, 2015
MCMURDO STATION MASTER PLAN 2.1 DECEMBER 16, 2015 TABLE OF CONTENTS INTRODUCTION 4 GLOSSARY 14 ARCHITECTURAL DESIGN GUIDING PRINCIPLES 18 FACILITY CONSIDERATIONS 22 FACILITIES PROGRAM 38 MCMURDO STATION MASTER PLAN 42 SOCIAL SPACES 70 MASTER PLAN FLOW DIAGRAMS 72 CIVIL SITE & UTILITY PLAN 78 ENERGY 84 INFORMATION TECHNOLOGY & TELECOMMUNICATIONS 98 FIRE PROTECTION STRATEGY 110 CONCLUSION 116 MCMURDO STATION MP 2.1 | DECEMBER 16, 2015 PG. 3 INTRODUCTION The McMurdo Master Plan 1.0 was completed in March of 2013. The purpose of that original plan was to provide an in-depth first look at the current layout of McMurdo, identify both constraints and opportunities for future redevelopment, and create a basic plan to serve as a guide for that development. That initial plan was intended to serve as a Master Plan “starting point” to generate substantive discussion. Not only did it generate that discussion, it also resulted in a great deal of excitement. Since Master Plans are meant to be updated in light of evolving technologies and new requirements, this version was created. The Master Plan 2.0 was published on December 26, 2014. This version, Master Plan 2.1, refelects continued refinement with respect to, among other inputs, modified strategies for Traverse Operations, the IT&C Facility, as well as snow deposition modeling. PG. 4 MCMURDO STATION MP 2.1 | DECEMBER 16, 2015 INTRODUCTION GOALS OF MASTER PLAN 2.1 MISSION STATEMENT The infrastructure modernization will ensure that McMurdo Station remains a viable platform for supporting Antarctic science for the next 35 to 50 years, whereby this modernization will: • Result in comprehensive redevelopment of McMurdo Station, Antarctica, into a more energy and operationally-efficient station, optimized for support of local and deep field science. -
Eemian Interglacial Reconstructed from a Greenland Folded Ice Core
ARTICLE doi:10.1038/nature11789 Eemian interglacial reconstructed from a Greenland folded ice core NEEM community members* Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling (‘NEEM’) ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 6 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 6 250 metres, reaching surface elevations 122,000 years ago of 130 6 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future. A 2,540-m-long ice core was drilled during 2008–12 through the ice at back to 123 kyr BP) or with the EDML Antarctic ice core (which 3–6 15 the NEEM site, Greenland (77.45u N, 51.06u W, surface elevation reaches back more than 135 kyr BP) . -
Drilling the New 5G-5 Branch Hole at Vostok Station for Collecting a Replicate Core of Old Meteoric Ice
Annals of Glaciology Drilling the new 5G-5 branch hole at Vostok Station for collecting a replicate core of old meteoric ice Aleksei V. Turkeev1 , Nikolai I. Vasilev2, Vladimir Ya. Lipenkov1, Article Alexey V. Bolshunov2, Alexey A. Ekaykin1,3 , Andrei N. Dmitriev2 Cite this article: Turkeev AV, Vasilev NI, and Dmitrii A. Vasilev2 Lipenkov VYa, Bolshunov AV, Ekaykin AA, Dmitriev AN, Vasilev DA (2021). Drilling the new 1 2 5G-5 branch hole at Vostok Station for Arctic and Antarctic Research Institute, St. Petersburg, Russia; Saint-Petersburg Mining University, 3 collecting a replicate core of old meteoric ice. St. Petersburg, Russia and Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia Annals of Glaciology 1–6. https://doi.org/ 10.1017/aog.2021.4 Abstract Received: 15 June 2020 Recent studies have shown that stratigraphically disturbed meteoric ice bedded at Vostok Station Revised: 29 March 2021 between 3318 and 3539 m dates back to 1.2 Ma BP and possibly beyond. As part of the VOICE Accepted: 30 March 2021 (Vostok Oldest Ice Challenge) initiative, a new deviation from parent hole 5G-1 was made at Keywords: depths of 3270–3291 m in the 2018/19 austral season with the aim of obtaining a replicate Ice drilling; old ice; paleoclimate; replicate ice core of the old ice. Sidetracking was initiated using the standard KEMS-132 electromechanical coring; sidetracking drill routinely employed for deep ice coring at Vostok, without significant changes to its initial Author for correspondence: design. Here we describe the method and operating procedures for replicate coring at a targeted Aleksei V.