Mcmurdo STATION MODERNIZATION STUDY Building Shell & Fenestration Study

Total Page:16

File Type:pdf, Size:1020Kb

Mcmurdo STATION MODERNIZATION STUDY Building Shell & Fenestration Study McMURDO STATION MODERNIZATION STUDY Building Shell & Fenestration Study April 29, 2016 Final Submittal MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 2 TABLE OF CONTENTS Section 1: Overview PG. 7-51 Team Directory PG. 8 Project Description PG. 9 Methodology PG. 10-11 Design Criteria/Environmental Conditions PG. 12-20 (a) General Description (b) Environmental Conditions a. Wind b. Temp c. RH d. UV e. Duration of sunlight f. Air Contaminants (c) Graphic (d) Design Criteria a. Thermal b. Air Infiltration c. Moisture d. Structural e. Fire Safety f. Environmental Impact g. Corrosion/Degradation h. Durability i. Constructability j. Maintainability k. Aesthetics l. Mechanical System, Ventilation Performance and Indoor Air Quality implications m. Structural implications PG. 21-51 Benchmarking 3 Section 2: Technical Investigation and Research PG. 53-111 Envelope Components and Assemblies PG. 54-102 (a) Components a. Cladding b. Air Barrier c. Insulation d. Vapor Barrier e. Structural f. Interior Assembly (b) Assemblies a. Roofs b. Walls c. Floors Fenestration PG. 103-111 (a) Methodology (b) Window Components Research a. Window Frame b. Glazing c. Integration to skin (c) Door Components Research a. Door i. Types b. Glazing Section 3: Overall Recommendation PG. 113-141 Total Configured Assemblies PG. 114-141 (a) Roofs a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic 4 (b) Walls a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic (c) Floors a. Good i. Description of priorities ii. Graphic b. Better i. Description of priorities ii. Graphic c. Best i. Description of priorities ii. Graphic Section 4: References PG. 143-145 VOLUME II Appendices – additional information supporting the report narratives, evaluations, and recommendations, as well as documentation for key project decisions. (a) Meeting Notes (b) Environmental Data (c) Component Data (d) Assembly Data — To be provided at 95% submittal (e) Fenestration Data — To be provided at 95% submittal (f) Energy Model and Analysis (g) References — To be provided at 95% submittal (h) Utilizing Off-Site Construction report 5 SECTION 1 OVERVIEW MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 7 Team Directory CLIENT National Science Foundation, United States Antarctic Program Antarctic Support Group, Lockheed Martin Corporation Logistical and Base Operations Support AUTHOR OZ Architecture Architecture, Interior Design, Planning CONSULTANTS Merrick and Company Consulting Engineers Hugh Broughton Architects Ltd. Subject Matter Expert / Peer Review Integrated Technology in Architecture Logistics and Fabrication Simpson Gumpertz & Heger Building Skin Specialists Rocky Mountain Institute High Performance Buildings Parametrix Construction Cost Estimating MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 8 Project Description This study identifies and evaluates the appropriate components and systems for consideration in the building envelope of all primary new facilities at McMurdo Station. From the evaluation of the various building envelope alternatives, this study makes recommendations for the most appropriate systems to contribute to the Basis of Design of the McMurdo Station facilities. Ultimately, this Basis of Design of the building envelope will be conveyed during the Design-Build solicitation without limiting the respondents’ ability to meet the performance standards via comparable means. Building Envelope “The envelope has to respond both to natural forces and human values. The natural forces include rain, snow, wind and sun. Human concerns include safety, security, and task success. The envelope provides protection by enclosure and by balancing internal and external environmental forces. To achieve protection it allows for careful control of penetrations. A symbol of the envelope might be a large bubble that would keep the weather out and the interior climate in.” – Richard Rush, The Building Systems Integration Handbook MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 9 Methodology This McMurdo Building Envelope Study involves: DESIGN CRITERIA 1 This first step establishes the various design criteria for McMurdo Station's building envelope. Such criteria involves the physical parameters of climatic, energy use, aesthetic, constructibility, logistical considerations, the cultural parameters of aesthetics, and the value parameters of first and life- cycle costs. Specifically, these design criteria are established for the various portions of the facility’s building envelope: roof, wall, and floor. BENCHMARKING 2 Here, the report investigates solutions used for the building shell at a number of other recently constructed Antarctic Research Stations and Arctic facilities. COMPONENT RESEARCH 3 This step involves the identification of the full range of potential building envelope components. This range represents the full spectrum, from those that have been proven through general use in the building industry, to those at the forefront of innovation both within the building industry and allied industries. However, this study does not entertain technologies that are either unproven in the building industry, or are employed at an advanced level with the aerospace industry. COMPONENT EVALUATION 4 Upon identification of both performance criteria and component characteristics, this study evaluates these components for their ability to satisfy the performance criteria. This evaluation involves the relative ranking of performance, summarized in both graphic and written form. ASSEMBLY RECOMMENDATION 5 Finally, based on this evaluation, this study recommends the optimal combination of building components to form the building envelope system for the facilities at McMurdo Station. MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 10 Methodology 1 DESIGN CRITERIA 2 BENCHMARKING 3 COMPONENT RESEARCH 4 COMPONENT EVALUATION 5 ASSEMBLY RECOMMENDATION MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 11 Design Criteria The following parameters are used as the basis of establishing the Design Criteria by which the range of building envelope components and systems are evaluated. Design Criteria are the factors and forces that impact the building shell and fenestration. GENERAL 1. All aspects of the construction, lifespan and removal of the building envelope shall be in conformance with the Antarctic Treaty. 2. Life Span of the McMurdo facilities shall be 50 years. This lifespan does not preclude replacement or refurbishment of specific envelope components. 3. On-site Labor to construct the enclosure shall be minimized. 4. Performance of the envelope shall be optimized to achieve an energy goal of 144 M BTU/yr. PHYSICAL PARAMETERS As the graphic diagram below indicates, the various physical parameters that form the basis for the physical design criteria involve: 1. Air Temperature gradients 2. Lateral and up-lift wind forces 3. Air infiltration 4. Ultra-violet intensity 5. Abrasion from air-born particulates 6. Structural & Thermal movement 7. Internal loading forces 8. Moisture Management CULTURAL PARAMETERS In addition to performing within the various physical parameters listed above, the building envelope shall respond to the following cultural parameters: 1. United States long-term Antarctic presence Durable, aesthetically timeless materials and forms 2. NSF presence and mission A display of the importance of the science mission through a design demonstrating thoughtful deliberation of the forms and the quality of the construction 3. Sensitivity to Place Facilities shall be designed to complement the unique Ross Island topographic, geological and climatic environment. 4. Promotion of Well-Being Indoor air quality, Thermal comfort, Views, Daylighting VALUE Both first cost and life-cycle cost are considered and evaluated. Life-cycle is not the life span of the building. Life span refers to the designed service life of the building, whereas life-cycle refers to the overall cost of the building through its life span as its is constructed, maintained, used, and removed. SYNERGIES The enclosure components being a part of a larger whole interact with other systems such as mechanical and structural designs. The ratios of opaque vs transparent enclosures are also a factor in the selection of the types of enclosures. The Design Phase will necessarily tune the enclosure components and assemblies to optimally satisfy the performance criteria in a cost effective manner. MCMURDO STATION MODERNIZATION STUDY | APRIL 29, 2016 12 Design Criteria FORCES PERFORMANCE CRITERIA WALLS/ROOFS | FLOORS | FENESTRATION TEMPERATURE THERMAL RESISTANCE -40F T0 30F DETERMINED BY ENERGY MODEL AIR MOVEMENT AIR INFILTRATION RESISTANCE 0.0002 CFM/SQFT | N/A | N/A MOISTURE MIGRATION MOISTURE INFILTRATION RESISTANCE 0.1 PERM | N/A | N/A WIND STRUCTURAL REQUIREMENTS 150 MPH YES | N/A | YES FIRE SMOKE DEVELOPED AND FLAME SPREAD CLASS A INTERIOR ENVIRONMENTAL GLOBAL WARMING POTENTIAL LOW GWP & ZERO OZONE DEPLETION CORROSION CORROSION RESISTANCE CATAGORIZED AS ACCEPTABLE ULTRAVIOLET UV RESISTANCE CATAGORIZED AS EXCELLENT ABRASION MATERIAL HARDNESS ____ | N/A | ____ HUMAN WEAR FRACTURE TOUGHNESS ____ | N/A | ____ CONSTRUCTABILITY IN SITU LABOR AND COMPLEXITY AIR SPACE AESTHETICS SUBJECTIVE THERMAL RESISTANCE Thermal Expansion is measured in terms of a coefficient known as coefficient
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Polarforschungsagenda Status Und Perspektiven Der Deutschen
    Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees SCAR/IASC Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees für Scientific Committee on Antarctic Research (SCAR) und International Arctic Science Committee (IASC) Deutsches Nationalkomitee SCAR/IASC Prof. G. Heinemann (Vorsitzender) Universität Trier, Fachbereich Raum- und Umweltwissenschaften Postanschrift: Behringstr. 21, 54296 Trier Telefon: +49/651/201-4630 Telefax: +49/651/201-3817 E-Mail: [email protected] www.scar-iasc.de Juli 2017 Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung. Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieser Publikation darf ohne schrift- liche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertra- gen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
    [Show full text]
  • Station Sharing in Antarctica
    IP 94 Agenda Item: ATCM 7, ATCM 10, ATCM 11, ATCM 14, CEP 5, CEP 6b, CEP 9 Presented by: ASOC Original: English Station Sharing in Antarctica 1 IP 94 Station Sharing in Antarctica Information Paper Submitted by ASOC to the XXIX ATCM (CEP Agenda Items 5, 6 and 9, ATCM Agenda Items 7, 10, 11 and 14) I. Introduction and overview As of 2005 there were at least 45 permanent stations in the Antarctic being operated by 18 countries, of which 37 were used as year-round stations.i Although there are a few examples of states sharing scientific facilities (see Appendix 1), for the most part the practice of individual states building and operating their own facilities, under their own flags, persists. This seems to be rooted in the idea that in order to become a full Antarctic Treaty Consultative Party (ATCP), one has to build a station to show seriousness of scientific purpose, although formally the ATCPs have clarified that this is not the case. The scientific mission and international scientific cooperation is nominally at the heart of the ATS,ii and through SCAR the region has a long-established scientific coordination body. It therefore seems surprising that half a century after the adoption of this remarkable Antarctic regime, we still see no truly international stations. The ‘national sovereign approach’ continues to be the principal driver of new stations. Because new stations are likely to involve relatively large impacts in areas that most likely to be near pristine, ASOC submits that this approach should be changed. In considering environmental impact analyses of proposed new station construction, the Committee on Environmental Protection (CEP) presently does not have a mandate to take into account opportunities for sharing facilities (as an alternative that would reduce impacts).
    [Show full text]
  • Polar Ice Coring and IGY 1957-58 in This Issue
    NEWSLETTER OF T H E N A T I O N A L I C E C O R E L ABORATORY — S CIE N C E M A N AGE M E N T O FFICE Vol. 3 Issue 1 • SPRING 2008 Polar Ice Coring and IGY 1957-58 In this issue . An Interview with Dr. Anthony J. “Tony” Gow Polar Ice Coring and IGY 1957-58 From the early 1950’s through the mid-1960’s, U.S. polar ice coring research was led by two U.S. Army An Interview with Dr. Tony Gow .... 1 Corps of Engineers research labs: the Snow, Ice, and Permafrost Research Establishment (SIPRE), and Upcoming Meetings ...................... 2 later, the Cold Regions Research and Engineering Laboratory (CRREL). One of the high-priority research Greenland Science projects recommended by the U.S. National Academy of Sciences/National Committee for IGY 1957-58 and Education Week ..................... 3 was to deep core drill into polar ice sheets for scientific purposes. To this end, SIPRE was tasked with Ice Core Working Group developing and running the entire U.S. ice core drilling and research program. Following the successful Members ....................................... 3 pre-IGY pilot drilling trials at Site-2 NW Greenland in 1956 (305 m) and 1957 (411 m), the SIPRE WAIS Divide turned their attention to deep ice core drilling in Antarctica for IGY 1957-58. Dr. Anthony J. (Tony) Ice Core Update ............................ 5 Gow (CRREL, retired) was one of the scientists on the project. In March 2008, the NICL-SMO had Ice Cores and POLAR-PALOOZA the opportunity to sit down with Dr.
    [Show full text]
  • Nsf.Gov OPP: Report of the U.S. Antarctic Program Blue Ribbon
    EXECUTIVE SUMMARY MORE AND BETTER SCIENCE IN ANTARCTICA THROUGH INCREASED A LOGISTICAL EFFECTIVENESS Report of the U.S. Antarctic Program Blue Ribbon Panel Washington, D.C. July 23, 2012 This booklet summarizes the report of the U.S. Antarctic Program Blue Ribbon Panel, More and Better Science in Antarctica Through Increased Logistical Effectiveness. The report was completed at the request of the White House office of science and Technology Policy and the National Science Foundation. Copies of the full report may be obtained from David Friscic at [email protected] (phone: 703-292-8030). An electronic copy of the report may be downloaded from http://www.nsf.gov/ od/opp/usap_special_review/usap_brp/rpt/index.jsp. Cover art by Zina Deretsky. Front and back inside covers showing McMurdo’s Dry Valleys in Antarctica provided by Craig Dorman. CONTENTS Introduction ............................................ 1 The Panel ............................................... 2 Overall Assessment ................................. 3 U.S. Facilities in Antarctica ....................... 4 The Environmental Challenge .................... 7 Uncertainties in Logistics Planning ............. 8 Activities of Other Nations ....................... 9 Economic Considerations ....................... 10 Major Issues ......................................... 11 Single-Point Failure Modes ..................... 17 Recommendations ................................. 18 Concluding Observations ....................... 21 U.S. ANTARCTIC PROGRAM BLUE RIBBON PANEL WASHINGTON,
    [Show full text]
  • Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer
    remote sensing Article Evaluation of Total Ozone Column from Multiple Satellite Measurements in the Antarctic Using the Brewer Spectrophotometer Songkang Kim 1 , Sang-Jong Park 2 , Hana Lee 1 , Dha Hyun Ahn 1, Yeonjin Jung 3 , Taejin Choi 2, Bang Yong Lee 2, Seong-Joong Kim 2 and Ja-Ho Koo 1,* 1 Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Korea; [email protected] (S.K.); [email protected] (H.L.); [email protected] (D.H.A.) 2 Korea Polar Research Institute, Incheon 21990, Korea; [email protected] (S.-J.P.); [email protected] (T.C.); [email protected] (B.Y.L.); [email protected] (S.-J.K.) 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02140, USA; [email protected] * Correspondence: [email protected]; Tel.: +82-2-2123-5694 Abstract: The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than Citation: Kim, S.; Park, S.-J.; Lee, H.; “which spatial resolution is used” for the investigation of the Antarctic TOC pattern.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Living and Working at USAP Facilities
    Chapter 6: Living and Working at USAP Facilities CHAPTER 6: Living and Working at USAP Facilities McMurdo Station is the largest station in Antarctica and the southermost point to which a ship can sail. This photo faces south, with sea ice in front of the station, Observation Hill to the left (with White Island behind it), Minna Bluff and Black Island in the distance to the right, and the McMurdo Ice Shelf in between. Photo by Elaine Hood. USAP participants are required to put safety and environmental protection first while living and working in Antarctica. Extra individual responsibility for personal behavior is also expected. This chapter contains general information that applies to all Antarctic locations, as well as information specific to each station and research vessel. WORK REQUIREMENT At Antarctic stations and field camps, the work week is 54 hours (nine hours per day, Monday through Saturday). Aboard the research vessels, the work week is 84 hours (12 hours per day, Monday through Sunday). At times, everyone may be expected to work more hours, assist others in the performance of their duties, and/or assume community-related job responsibilities, such as washing dishes or cleaning the bathrooms. Due to the challenges of working in Antarctica, no guarantee can be made regarding the duties, location, or duration of work. The objective is to support science, maintain the station, and ensure the well-being of all station personnel. SAFETY The USAP is committed to safe work practices and safe work environments. There is no operation, activity, or research worth the loss of life or limb, no matter how important the future discovery may be, and all proactive safety measures shall be taken to ensure the protection of participants.
    [Show full text]
  • Concordia: a New Permanent, International Research Support Facility High on the Antarctic Ice Cap
    “Concordia: a new permanent, international research facility high on the Antarctic ice cap” A paper presented at ISCORD2000, Hobart, Tasmania, Jan-Feb 2000 Concordia: A new permanent, international research support facility high on the Antarctic ice cap. Patrice Godon1 and Nino Cucinotta2 INTRODUCTION While there is a continuously increasing awareness of the importance of Antarctic research, the 14 million square kilometres Antarctic continent still only houses two permanent inland research stations, Amundsen-Scott and Vostok opened in Nov 1956 and Dec 1957 respectively. Recognising the unique research opportunities offered by the Antarctic Plateau, the French and Italian Antarctic programmes have agreed in 1993 to cooperate in developing a permanent research support facility at Dome C, high on the ice cap. The facility is named “Concordia”. Concordia consists of a core group of three ‘winter’ buildings flanked by a summer camp doubling up as emergency camp. All structures are on or above ground. Access is by traverse tractor trains for heavy equipment and by light ski-equipped plane for personnel and selected light cargo. Jointly operated by France and Italy, Concordia is open for research to the worldwide scientific community. Officially open for routine summer operation in Dec 1997, Concordia should be open year round from 2003 upon completion of the core winter buildings. Facilities are designed for a winter population of 16 expeditioners, nine persons conducting scientific experiments and seven support staff. Concordia pioneers an advanced concept in Antarctic operations, the integral self- elevating building, and introduces a new generation of regular, long-range Figure 1: Map showing Antarctica, Australia, New- logistic traverses.
    [Show full text]
  • Mcmurdo Station Master Plan 2.1 December 16, 2015
    MCMURDO STATION MASTER PLAN 2.1 DECEMBER 16, 2015 TABLE OF CONTENTS INTRODUCTION 4 GLOSSARY 14 ARCHITECTURAL DESIGN GUIDING PRINCIPLES 18 FACILITY CONSIDERATIONS 22 FACILITIES PROGRAM 38 MCMURDO STATION MASTER PLAN 42 SOCIAL SPACES 70 MASTER PLAN FLOW DIAGRAMS 72 CIVIL SITE & UTILITY PLAN 78 ENERGY 84 INFORMATION TECHNOLOGY & TELECOMMUNICATIONS 98 FIRE PROTECTION STRATEGY 110 CONCLUSION 116 MCMURDO STATION MP 2.1 | DECEMBER 16, 2015 PG. 3 INTRODUCTION The McMurdo Master Plan 1.0 was completed in March of 2013. The purpose of that original plan was to provide an in-depth first look at the current layout of McMurdo, identify both constraints and opportunities for future redevelopment, and create a basic plan to serve as a guide for that development. That initial plan was intended to serve as a Master Plan “starting point” to generate substantive discussion. Not only did it generate that discussion, it also resulted in a great deal of excitement. Since Master Plans are meant to be updated in light of evolving technologies and new requirements, this version was created. The Master Plan 2.0 was published on December 26, 2014. This version, Master Plan 2.1, refelects continued refinement with respect to, among other inputs, modified strategies for Traverse Operations, the IT&C Facility, as well as snow deposition modeling. PG. 4 MCMURDO STATION MP 2.1 | DECEMBER 16, 2015 INTRODUCTION GOALS OF MASTER PLAN 2.1 MISSION STATEMENT The infrastructure modernization will ensure that McMurdo Station remains a viable platform for supporting Antarctic science for the next 35 to 50 years, whereby this modernization will: • Result in comprehensive redevelopment of McMurdo Station, Antarctica, into a more energy and operationally-efficient station, optimized for support of local and deep field science.
    [Show full text]
  • Site Testing for Submillimetre Astronomy at Dome C, Antarctica
    A&A 535, A112 (2011) Astronomy DOI: 10.1051/0004-6361/201117345 & c ESO 2011 Astrophysics Site testing for submillimetre astronomy at Dome C, Antarctica P. Tremblin1, V. Minier1, N. Schneider1, G. Al. Durand1,M.C.B.Ashley2,J.S.Lawrence2, D. M. Luong-Van2, J. W. V. Storey2,G.An.Durand3,Y.Reinert3, C. Veyssiere3,C.Walter3,P.Ade4,P.G.Calisse4, Z. Challita5,6, E. Fossat6,L.Sabbatini5,7, A. Pellegrini8, P. Ricaud9, and J. Urban10 1 Laboratoire AIM Paris-Saclay (CEA/Irfu, Univ. Paris Diderot, CNRS/INSU), Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France e-mail: [pascal.tremblin;vincent.minier]@cea.fr 2 University of New South Wales, 2052 Sydney, Australia 3 Service d’ingénierie des systèmes, CEA/Irfu, Centre d’études de Saclay, 91191 Gif-Sur-Yvette, France 4 School of Physics & Astronomy, Cardiff University, 5 The Parade, Cardiff, CF24 3AA, UK 5 Concordia Station, Dome C, Antarctica 6 Laboratoire Fizeau (Obs. Côte d’Azur, Univ. Nice Sophia Antipolis, CNRS/INSU), Parc Valrose, 06108 Nice, France 7 Departement of Physics, University of Roma Tre, Italy 8 Programma Nazionale Ricerche in Antartide, ENEA, Rome Italy 9 Laboratoire d’Aérologie, UMR 5560 CNRS, Université Paul-Sabatier, 31400 Toulouse, France 10 Chalmers University of Technology, Department of Earth and Space Sciences, 41296 Göteborg, Sweden Received 25 May 2011 / Accepted 17 October 2011 ABSTRACT Aims. Over the past few years a major effort has been put into the exploration of potential sites for the deployment of submillimetre astronomical facilities. Amongst the most important sites are Dome C and Dome A on the Antarctic Plateau, and the Chajnantor area in Chile.
    [Show full text]
  • Mcmurdo Station, Antarctica MASTER PLAN for WORLD’S COLDEST AIRPORT
    McMurdo Station, Antarctica MASTER PLAN FOR WORLD’S COLDEST AIRPORT Ty C. Sander, PE Vice President & Aviation Group Manager (BSCE ‘98) Andrew J. Bodine, PE, CM Project Manager (BSCE ‘11) Overview 1. Antarctica 2. Air Operations in Antarctica 3. Single Airfield Complex Master Plan Similar But Different • Air Passenger Terminal Similar But Different • Air Passenger Terminal Similar But Different • Air Passenger Terminal Antarctica: A Place of Extremes • Coldest • Driest • Windiest • Least Inhabited • Most Isolated • Harshest Antarctica: A Place of Extremes 5.4M Sq. Miles Antarctica: A Place of Extremes • 98% Ice Covered • 70% World’s Fresh Water • 6,000 ft Thick Why Antarctica? SCIENCE Unique Species Why Antarctica? SCIENCE Unique Species Why Antarctica? SCIENCE Unique Geology Why Antarctica? SCIENCE Unique Climate Why Antarctica? SCIENCE Unique Environment Antarctica Development • National Science Foundation – USAP – McMurdo 1955 • Farthest South Accessible by ship National Science Foundation (NSF) Operations US Stations: • Palmer • McMurdo • South Pole NSF Cycle of Operations at McMurdo • Austral Winter • Nearly 6 months of darkness • Skeleton Crew (~150) • Limited Maintenance/ Construction • No Transport Apr-Aug NSF Cycle of Operations at McMurdo Sep: Winfly Oct-Nov: Major Influx Dec-Jan: Peak Population 1,300 Continent 1,000 @ McMurdo Feb-Mar: Northern Migration Why Air Operations in Antarctica? Limited Options Sea transport 2 ships per year: Cargo, Fuel Led in by icebreaker Why Air Operations in Antarctica? • Land transport – No paved
    [Show full text]