The Working Memory of Argument-Verb Dependencies Spatiotemporal Brain Dynamics During Sentence Processing 125 Moritz M
Total Page:16
File Type:pdf, Size:1020Kb
The Working Memory of Argument–Verb Dependencies Spatiotemporal Brain Dynamics during Sentence Processing Impressum Max Planck Institute for Human Cognitive and Brain Sciences, 2013 Diese Arbeit ist unter folgender Creative Commons-Lizenz lizenziert: http://creativecommons.org/licenses/by-nc/3.0 Druck: Sächsisches Druck- und Verlagshaus Direct World, Dresden © Titelbild: Foto Lars Meyer, 2013 (Detail aus dem Wandmosaik „Der Mensch bezwingt den Kosmos“ von Fritz Eisel in Potsdam) ISBN 978-3-941504-29-5 T HE WORKING M EMORY OF A RGUMENT–V ERB D EPENDENCIES Spatiotemporal Brain Dynamics during Sentence Processing Dissertation zur Erlangung des akademischen Grades eines Doctor philosophiae (Dr. phil.) der Humanwissenschaftlichen Fakultät der Universität Potsdam vorgelegt von Lars Meyer, M.Sc. Leipzig, 2012 Gutachterinnen Prof. Dr. Angela D. Friederici Prof. Dr. Isabell Wartenburger Für Marlene Fock-Greulich in dankbarer Erinnerung ACKNOWLEDGMENTS Amongst the fellow neuroscientists who deserve credit for the content, look, and feel of this thesis, I am obliged to Angela D. Friederici and Isabell Wartenburger for acceptance and assessment of my work. I cordially thank my supervisors: The climate of Angela D. Friederici’s unconditional supervision meandered between research freedom and rigid discussion—both of which were highly stimulating. For his advice and high analytical standards as well as our arguments and creative juggling of datasets I thank my friend, partner in crime, and supervisor, Jonas Obleser. For sharing data-screening experience, skeptical methodological and witty engineering skills, deeply felt thanks to Alfred Anwander, Maren Grigutsch, Thomas Gunter, Molly Henry, Annette Horstmann, Stefan J. Kiebel, Burkhard Maess, Michiru Makuuchi, and Helena Trompelt. Data quality, research quality, text quality, graphics quality, and emotional quality—choose those that fit you best—were ensured by Kerstin Flake, Andrea Gast-Sandmann, Sarah Gierhan, Björn Herrmann, Mike Hove, Sarah Jessen, Iris N. Knierim, Ina Koch, Anke Kummer, Stephan Liebig, Claudia Männel, Jutta Mueller, Helga Smallwood, Celia Sommer, Rosie Wallis, Annett Wiedemann, Simone Wipper, and at least twelve anonymous reviewers. I am grateful to all of you. C ONTENTS Preface viii 1 General Introduction 1 1.1 Argument–Verb Dependencies . 1 1.2 Working Memory . 3 1.3 Argument–Verb Dependencies and Working Memory . 6 1.4 Open Issues . 9 2 General Methodology 13 2.1 Magnetic Resonance Imaging . 13 2.1.1 Functional Magnetic Resonance Imaging . 13 2.1.2 Voxel-Based Morphometry . 15 2.1.3 Diffusion-Weighted Imaging and Diffusion-Tensor Imaging . 17 2.2 Electroencephalography . 20 2.2.1 Event-Related Brain Potentials . 20 2.2.2 Time–Frequency Analysis . 22 2.2.3 Source Localization . 24 2.3 Experimental Paradigm . 25 2.3.1 Linguistic Considerations . 26 2.3.2 Psycholinguistic Considerations . 27 2.3.3 Psychological Considerations . 28 i Contents 2.3.4 General Hypotheses . 29 3 Behavioral Study 31 3.1 Introduction . 31 3.2 Methods . 32 3.2.1 Participants . 32 3.2.2 Materials . 33 3.2.3 Procedure . 33 3.3 Data Analysis . 33 3.4 Results . 34 3.5 Discussion . 36 4 Magnetic-Resonance-Imaging Study 39 4.1 Introduction . 39 4.2 Methods . 42 4.2.1 Participants . 42 4.2.2 Working-Memory Test . 42 4.2.3 Materials . 42 4.2.4 Procedure . 43 4.2.5 Magnetic-Resonance-Imaging Data Acquisition . 43 4.2.6 Data Analysis . 44 4.2.6.1 Behavioral Data . 44 4.2.6.2 Functional-Magnetic-Resonance-Imaging Data . 45 4.2.6.3 Correlation Analysis . 45 4.2.6.4 Voxel-Based Morphometry . 46 4.2.6.5 Diffusion-Tensor Imaging and Fractional Anisotropy . 47 4.3 Results . 48 4.3.1 Behavioral Results . 48 4.3.2 Functional-Magnetic-Resonance-Imaging Results . 49 4.3.3 Voxel-Based-Morphometry Results . 51 ii Contents 4.3.4 Diffusion-Tensor-Imaging and Fractional-Anisotropy Results . 53 4.4 Discussion . 54 4.4.1 Behavioral Results . 54 4.4.2 Functional-Magnetic-Resonance-Imaging Results . 55 4.4.2.1 The Left Inferior Frontal Gyrus Activates for Reordering . 56 4.4.2.2 The Left Temporo-Parietal Region Activates for Storage . 59 4.4.3 Individual Differences: Asymmetry of the Inferior Frontal Gyrus . 61 4.4.4 Diffusion-Tensor-Imaging and Fractional-Anisotropy Results . 64 4.5 Conclusion . 67 5 Patient Study 69 5.1 Introduction . 69 5.2 Methods . 71 5.2.1 Participants . 71 5.2.2 Working-Memory Test Battery . 72 5.2.3 Materials . 72 5.2.4 Procedure . 72 5.2.5 Magnetic-Resonance-Imaging Data Acquisition . 73 5.2.6 Data Analysis . 74 5.2.6.1 Working-Memory Test Battery . 74 5.2.6.2 Behavioral Data . 74 5.2.6.3 Diffusion-Tensor Imaging . 74 5.3 Results . 75 5.3.1 Working-Memory Results . 75 5.3.2 Sentence-Processing Results . 76 5.3.3 Diffusion-Tensor-Imaging Results . 77 5.4 Discussion . 78 5.5 Conclusion . 80 6 Electroencephalography Study 83 iii Contents 6.1 Introduction . 83 6.2 Methods . 86 6.2.1 Participants . 86 6.2.2 Materials . 86 6.2.3 Procedure . 86 6.2.4 Data Analysis . 88 6.2.5 Source Localization . 89 6.2.6 Correlation Analysis . 89 6.3 Results . 90 6.3.1 Behavioral Results . 90 6.3.2 Time–Frequency Results . ..