Humidity-Sensing Component Composition

Total Page:16

File Type:pdf, Size:1020Kb

Humidity-Sensing Component Composition Patentamt JEuropaischesEuropean Patent Office © Publication number: 0 242 834 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 87105802.0 © Int.CI.3: G 01 N 27/12 @ Dateoffiling: 21.04.87 © Priority: 24.04.86 JP 93211/86 ©Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC. 24.04.86 JP 93212/86 5-2,Marunouchi2-chomeChiyoda-Ku 23.12.86 JP 305392/86 Tokyo(JP) © Inventor: Sugio, Akitoshi © Dateof publication of application: 382-155, Besho Ohaza-Sashiougiryo 28.10.87 Bulletin 87/44 Ohmiya-shiSaitama-Ken(JP) © Designated Contracting States: © Inventor: Shimomura.Tadashi FR GB 11 05-21, Higashifukai Nagareyama-shi Chiba-Ken(JP) @ Inventor: Wakabayashi, Hidechika 6-101, Nishlkubocho 15-chome Tokiwadaira Matsudo-shl Chiba-Ken(JP) © Inventor: Kondo,Osamu 25-15-201, Niijyuku 5-chome Katsushika-ku Tokyo(JP) @ Inventor: Ogasawara, Kazuharu 1 1 -1 6, Kanamachi 5-chome Katsushika-ku Tokyo(JP) © Inventor: Nishizawa, Chiharu 17-1,Kanegasaku Matsudo-shl Chiba-Ken(JP) © Representative: Blumbach Weser Bergen Kramer Zwirner Hoffmann Patentanwalte Radeckestrasse43 D-8000Munchen60(DE) Humidity-sensing component composition. © A humidity-sensing component composition includes a metallic oxide and a chalcogen oxyacid salt represented by a general formula AxByOz where A is one of an alkali metal and an alkaline earth metal, B is one of sulphur, selenium, and tellurium, O is oxygen, x is 1 to 2, y 1 to 5, and z 2 to 7. The chalcogen oxyacid salt is blended by an amount of 0.01 to 99.99 mol% in the metallic oxide with the sum of the metallic oxide and the chalcogen oxyacid salt as a reference. The met- allic oxide and the chalcogen oxyacid salt are sintered under an atmosphere of molecular oxygen. Croydon Printing Company Ltd. 0242834 TITLE THE INVENTION 87/8726 EPC HUMIDITY-SENSING COMPONENT COMPOSITION b BAUKUKUUNL) UF THE INVENTION Field of the Invention The present invention relates to a humidity-sensing component composition which detects relative humidity as a 10 change in the value of the electrical resistance. Description of the Prior Art Conventionally, materials known as humidity-sensing component compositions are: 15 (1) Materials using electrolytic quality salts such as lithium chloride; (2) Materials utilizing organic polymer films such as polyamide or polyethylene films; (3) Materials using metallic semiconductors such as 20 selenium or germanium; and (4) Materials utilizing sintered bodies of metallic oxides such as titanium oxide, aluminium oxide, or stannic oxide. Among these, the materials using sintered bodies 25 of metallic oxides have the merit of being more stable chemically and physically than other humidity-sensing component compositions such as organic polymer films, and these can be said to be effective as humidity-sensing component compositions. 30 However, these sintered bodies of metallic oxides usually have the following types of drawbacks: (1) The characteristic resistance value is high, and is not in the practical resistance value range. In regions of low humidity especially, the resistance of the 35 humidity-sensing component composition abruptly becomes - 1 - 5242834 high, so the measurement of humidity in regions of low humidity is difficult. (2) Dependence on temperature in the humidity-sensing characteristics is large, so temperature compensation is 5 necessary. (3) Hysteresis in the humidity-sensing characteristics is investigated when moisture is absorbed and released. (4) Resistance to thermal shock is low, and the LO humidity-sensing characteristics deteriorate. (5) Products of hydration are absorbed on and foul the surface of sintered bodies of metallic oxides so that the humidity-sensing characteristics deteriorate, making periodic heat cleaning necessary. 15 For these reasons, the development of a humidity-sensing component composition with high reliability has been greatly desired. SUMMARY OF THE INVENTION 20 An object of the present invention is to provide, with due consideration to the drawbacks of such conventional materials, a reliable humidity-sensing component composition. 25 Another object of the present invention is to provide a humidity-sensing component composition in which the characteristic resistance value is low and is in the practical resistance value range. Another object of the present invention is to provide 30 a humidity-sensing component composition in which the dependence on temperature in the humidity-sensing characteristics is extremely small so that temperature compensation is unnecessary. Another object of the present invention is to provide in 35 a humidity-sensing component composition which - 2 - 0242834 hysteresis is almost absent in the humidity-sensing component characteristics when moisture is absorbed and released. Another object of the present invention is to provide 5 a humidity-sensing component composition which can withstand thermal shock. Another object of the present invention is to provide a humidity-sensing component composition for which special heat cleaning is unnecessary. 10 Another object of the present invention is to provide a humidity-sensing component composition which exhibits good humidity-sensing characteristics in regions of low humidity, especially in regions of 40% RH and below. With the above objects in view, the present invention 15 resides in a humidity-sensing component composition including a metallic oxide and a chalcogen oxyacid salt represented by a general formula ABO where A is one of a y <b an alkali metal and an alkaline earth metal, B is one of sulphur, selenium, and tellurium, O is oxygen, x is 1 to 2, 20 y 1 to 5, and z 2 to 7, said chalcogen oxyacid salt being blended by an amount of 0.01 to 99.99 mol% in the metallic oxide with the sum of the metallic oxide and the chalcogen oxyacid salt as a reference, the metallic oxide and the chalcogen oxyacid salt being sintered under an atmosphere 25 of molecular oxygen. BRIEF DESCRIPTION OF THE DRAWINGS The other objects, features, and advantages of the 30 present invention will become more apparent from the following description of the preferred embodiments taken in conjunction with the accompanying drawings, in which: Fig. 1 is a front elevation showing one embodiment of the humidity-sensing component made from the 35 humidity-sensing component composition of the present - 3 - invention. U graphs showing the Fig. 2 to Fig. are characteristics of the humidity-sensing component invention in which: composition of the present 3 show the humidity-sensing i Fig. 2 and Fig. show the relationship characteristics; Fig. 4 and Fig. 5 and the humidity-sensing between temperature the in characteristics; Fig. 6 and Fig. 7 show hysteresis characteristics after the composition the humidity-sensing of high humidity? Fig. 8 and Fig. 0 was held under conditions characteristics before and 9 show the humidity-sensing to a thermal shock after the composition was subjected characteristics test; Fig. 10 shows the humidity-sensing subjected to a water before and after the composition was 11 shows the hysteresis in the 5 resistance test; Fig. the composition was humidity-sensing characteristics after held under conditions of high humidity. EMBODIMENTS hf.TATT.ED DESCRIPTION OF THE PREFERRED 10 according to A humidity-sensing component composition described in detail with the present invention is now reference to the drawings. the metallic oxides used In the present invention, have humidity-sensing characteristics, 25 are materials which which are conventionally known as and, of course, materials humidity-sensing component effective components of a TaO, composition are included. MgO, Ti02, Zr02, Nb205, Mn02, M^O^ FeO, Fe^, CoO, Ta205 Cr203, M0O3, W03, ZnO, In^, Tl^, 30 Co 0 NiO, Ni203, Ni304, Al^, Ga^, PbO, Bi^, and the like are Si02, Ge02, SnO, Sn02, Sb^, of oxides, while ZnFe204, given as examples Mg2Fe204, (above, spinel), 3Al203.2Si02 MgAl204, MgCr203, ZnCr203 examples of compound (Mullite), and the like are given as ZnO, MgO, Zr02, NiO, 35 oxides. Among these, Ti02, Y-Al203, - 4 - 0242834 MgAl202 and the like are particularly desirable. Among the metallic oxides, those refined by thermal decomposition, such as metallic salts, metallic hydroxides, alkoxides, and the like are acceptable. Especially, in providing a 5 humidity-sensing component composition for satisfactory measurement in low humidity regions of 40% RH or less, the use of a combination of metallic oxides such as titanium oxide, and cupric oxide or cuprous oxide is particularly desirable. 10 Chalcogen oxyacid salt is represented by the following general formula (I). ABO (I) x y z * ' 15 wherein A is one of an alkali metal and an alkaline earth metal, B is one of sulphur, selenium, and tellurium, 0 is oxygen, x is 1 to 2, y 1 to 5, and z 2 to 7. Specific examples of sulphur oxyacids are the sulphoxylates sulphites, disulphites , (metabisulphites) , 20 dithionites, disulphates (pyrosulphates) , thiosulphates, and thionates. Specific examples of selenium oxyacids are the selenites and selenates. Specific examples of tellurium oxyacids are the tellurites and tellurates. The ratios of metallic oxides and chalcogen oxyacid 25 salts in the humidity-sensing component composition of the present convention are based on a reference value of the sum of the metallic oxide component and the chalcogen oxyacid salt component. The chalcogen oxyacid salt component will range from 0.01 to 99.99 mol%, with the 30 desirable range being 0.1 to 99.9 mol%, especially less than 50 mol% in consideration of economy and characteristics. After blending each of the components for this humidity-sensing component composition, the sintered body obtained by means of suitable sintering conditions has 35 an extremely improved humidity-sensing characteristic in - 5 - component composition comparison with a humidity-sensing oxide only. prepared from the metallic Particularly when providing a humidity-sensing satisfactory measurement in low component composition for of 40% RH or less, a combination of h humidity regions and cupric oxide or metallic oxides such as titanium oxide, with a of 50 to 98 mol% for cuprous oxide, is used, range for the cupric or cuprous the titanium oxide, 1 to 40% the oxyacid salt oxide, and 1 to 10 mol% for chalcogen desirable.
Recommended publications
  • Hypochlorous Acid Handling
    Hypochlorous Acid Handling 1 Identification of Petitioned Substance 2 Chemical Names: Hypochlorous acid, CAS Numbers: 7790-92-3 3 hypochloric(I) acid, chloranol, 4 hydroxidochlorine 10 Other Codes: European Community 11 Number-22757, IUPAC-Hypochlorous acid 5 Other Name: Hydrogen hypochlorite, 6 Chlorine hydroxide List other codes: PubChem CID 24341 7 Trade Names: Bleach, Sodium hypochlorite, InChI Key: QWPPOHNGKGFGJK- 8 Calcium hypochlorite, Sterilox, hypochlorite, UHFFFAOYSA-N 9 NVC-10 UNII: 712K4CDC10 12 Summary of Petitioned Use 13 A petition has been received from a stakeholder requesting that hypochlorous acid (also referred 14 to as electrolyzed water (EW)) be added to the list of synthetic substances allowed for use in 15 organic production and handling (7 CFR §§ 205.600-606). Specifically, the petition concerns the 16 formation of hypochlorous acid at the anode of an electrolysis apparatus designed for its 17 production from a brine solution. This active ingredient is aqueous hypochlorous acid which acts 18 as an oxidizing agent. The petitioner plans use hypochlorous acid as a sanitizer and antimicrobial 19 agent for the production and handling of organic products. The petition also requests to resolve a 20 difference in interpretation of allowed substances for chlorine materials on the National List of 21 Allowed and Prohibited Substances that contain the active ingredient hypochlorous acid (NOP- 22 PM 14-3 Electrolyzed water). 23 The NOP has issued NOP 5026 “Guidance, the use of Chlorine Materials in Organic Production 24 and Handling.” This guidance document clarifies the use of chlorine materials in organic 25 production and handling to align the National List with the November, 1995 NOSB 26 recommendation on chlorine materials which read: 27 “Allowed for disinfecting and sanitizing food contact surfaces.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    A Comparison of Halogeno and Oxyacids L53 A COMPARISON OF HALOGENO AND OXYACIDS J. A. Nieuwland and T. H. Vaughn, University of Notre Dame In a recent paper originating in this department and sent to one of the chemical journals for publication the term "fluo acid" was used to designate a flourine containing acid which could be considered as having been formed by substituting two flourine atoms for each oxygen atom in an oxyacid. Criticism of this term on the ground that it was novel and unusual resulted. The paper mentioned being essentially organic in its nature it was impossible to explain the matter sufficiently except as a separate discussion. The purpose of this paper is to make an attempt to establish the term "halogeno acid" as a general name for acids in which the halogens may be considered to replace the oxygen in oxyacids and to establish the terms, fluo, chloro, bromo, and iodo as the specific names of these acids where the halogen involved is flourine, chlorine, bromine, and iodine respectively. As a matter of fact these names have been used in several cases and are accepted terms for those cases, i.e., fluoboric acid, bromostannic acid, fluoplumbic acid, fluosilicic acid, etc. When various molecular portions of water are added to the anhydrides of the acid forming elements, the several oxyacids are produced. B 2 3 +H 2 0^2HB0 2 B 2 2 +3H 2 0->2H 3 B0 3 In an analogous manner when the halogen acids are added to the halogen compounds corresponding to the anhydrides of the acid forming elements, the halogeno acids are formed.
    [Show full text]
  • Atoms, Molecules, Ions, and Inorganic Nomenclature
    Atoms, Molecules, Ions, and Inorganic Nomenclature Brown, LeMay Ch 2 AP Chemistry Monta Vista High School 2.2: Evidence for the Atomic Theory 1. J.J. Thomson’s cathode ray tube: discovery of electrons and the e- charge-to-mass ratio ¶ In a vacuum chamber, flow of high voltage (emitted from cathode to anode) is deflected by magnetic & electrical fields (animation: http://highered.mcgraw-hill.com/olcweb/cgi/pluginpop.cgi?it=swf::100%::100%::/sites/dl/free/ 0072512644/117354/01_Cathode_Ray_Tube.swf::Cathode%20Ray%20Tube) 2 2. Robert Millikan’s oil drop: determines charge of e- (and thus the mass) ¶ “Atomized” drops of oil picked up small charges (integral numbers), and balanced oil drops in an electrical & gravitational field http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/004_MILLIKANOIL.MOV 3. Ernest Rutherford’s gold foil: discovery of nucleus as center of positive charge ¶ Alpha particles from radioactive source are deflected from positive gold atom nuclei http://www.mhhe.com/physsci/ chemistry/animations/ chang_2e/ rutherfords_experiment.swf 2.3: Structure of the Atom Figure 1: Subatomic particles (Table 2.1; 1 amu = 1.66054 x 10-24 g). Subatomic Charge Location Mass particle Proton, p+ +1.6 x 10-19 C nucleus 1.0073 amu Neutron, n None nucleus 1.0087 amu Electron, e- -1.6 x 10-19 C e- cloud 5.486 x 10-4 amu 5 Vocabulary n Atomic number: number of p+ (determines the element) n Mass number: sum of p+ and n (determines the isotope) n Isotopes: atoms of an element that differ in the number of neutrons n Isobars: atoms of different elements with same atomic mass but different atomic number.
    [Show full text]
  • Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY
    Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY You try #1: 1) For each compound, put a check () in the box for the appropriate class/subclass. Compound Ionic, Ionic, Molecular Acid, Acid, Formula Type I Type II (covalent) Binary Oxyacid How did you know that? CCl4 All nonmetals, no H in front SnCl2 Sn is not a Type I metal HCl(aq) H + one nonmetal ZnCl2 Type I metal (always +2) NH4Cl NH4 belongs in Type I H2CO3(aq) H + 2 nonmetals (with O) MgCO3 Type I metal (always +2) MnCO3 Mn is not a Type I metal CO2 All nonmetals, no H in front You try #2: 2) Now, let’s apply these rules to each of the compounds that you categorized in question 1). Compound Class/ Name Formula subclass How did you know that? CCl4 Molecular carbon Don’t use mono with first element. Change ending of (covalent) tetrachloride second element to –ide. SnCl2 Ionic, tin(II) chloride We need to figure out the charge on the Sn (since it Type II is a type II metal). The Sn must cancel the 2- charge on the Cl ions. HCl(aq) Acid, hydrochloric Binary acids are the only ones that start with Binary acid “hydro”. SrCl2 Ionic, strontium Sr is always +2 so we don’t need roman numerals. Type I chloride NH4Cl Ionic, ammonium NH4 is the one nonmetal that fits into the Type I Type I chloride ionic compound. 2- H2CO3(aq) Acid, carbonic acid Knowing that the base ion for this acid (CO3 ) is Oxyacid called “carbonate”, we can figure out that the ending changes to –ic.
    [Show full text]
  • Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 713685, 8 pages http://dx.doi.org/10.1155/2014/713685 Research Article Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water Jiancheng Wang,1 Zhaoliang Peng,1 Bing Wang,1 Lina Han,1,2 Liping Chang,1 Weiren Bao,1 and Gang Feng3 1 State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China 2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 3 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China Correspondence should be addressed to Weiren Bao; [email protected] and Gang Feng; [email protected] Received 9 February 2014; Accepted 14 March 2014; Published 4 May 2014 Academic Editor: Wen Zeng Copyright © 2014 Jiancheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aseriesofmanganesesalts(Mn(NO3)2, MnCl2, MnSO4,andMn(Ac)2) and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate) were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD), X- ray photoelectron spectrometer (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to characterize the structure and morphology of the solid products. It was found that MnO2,Mn2O3,andMn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes.
    [Show full text]
  • Curricular Axis Standard Competencies
    SUBJECT GRADE LEARNING UNIT NATURAL SCIENCES 9TH HOW TO RELATE THE COMPONENTS OF THE WORLD TITLE OF LEARNING OBJECT How does water transform the minerals in rocks CURRICULAR AXIS Living environment STANDARD Record my observations and results by using diagrams, graphs COMPETENCIES and tables. LEARNING OBJECTIVES 1. To make short presentations of the acid compounds (oxyacid and hydracids) and hydroxides contained in products used in the industry or at home. 2. To explain in short conversations, the influence of acids (oxyacids- hydracids) and hydroxides in natural and human- induced phenomena in the planet. 3. To establish relations between metals, non-metals and the formation of acids and hydroxides. SKILLS/ KNOWLEDGE S/K 1: Illustrate the paths to obtain acids (oxyacids and hydracids) and hydroxides and establishes relations with the organization of the periodic table of elements. S/K2: Provide examples of applications and uses of acids and hydroxides. S/K3: Differentiate the various ways in which an acid or a hydroxide can be named. S/K4: Represent and describes the chemical equations of salt formation. S/K 5: Explain acid rain and inquires about the natural and human processes behind it. S/K 6: Enquire about the weathering process. LEARNING FLOW Introduction Objectives Activity 1: Obtaining acids ( oxyacids - hydracid) and hydroxides Salt formation Applications in industry and domestic activities Activity 2: Nomenclature of acids (oxyacids - hydracid), hydroxides and salt. Activity 3: •Acid rain • Weathering Abstract Homework Evaluation Glossary ASSESSMENT This learning object is intended for the student to find a simple, GUIDELINE didactic and contextual guide. Likewise, students must develop the guide completely, including the different activities of this LO, by using the diverse tools and autonomous work suggested here.
    [Show full text]
  • Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide
    ® Basic Chemicals Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide Introduction temperature of the cooling water. From the heat Chlorine dioxide, which has a long history of use exchanger the hot cooling water goes to the top in drinking water disinfection, is increasing its of the cooling tower, shown in Figure 2, it is share of the cooling tower microbiological sprayed over the fill and slowly falls to the sump. control market. In large measure, this is the The fan at the top of the tower induces a draft, result of chlorine dioxide's benefits when which causes water evaporation and cooling. compared to other cooling tower biocides: it acts From the sump cool water is pumped back to rapidly; is less sensitive to cooling water the heat exchanger. contamination and pH changes; has few side reactions, and is environmentally friendly. This Cooling System Treatment brochure covers the theory and practical Treatment of cooling systems has two basic application of chlorine dioxide to cooling towers. objectives: to protect and extend the life of the cooling system and to insure good heat transfer and removal. Any fouling of the heat exchanger surface by scale, debris, or microbiological growth decreases the heat transfer efficiency. Corrosion destroys heat exchanger surfaces and causes leaks that result in mixing of the cooling water and the process fluid. Consequently there are three components to a cooling water treatment program: 1) microbiological control, 2) scale and deposit control and 3) corrosion control. The treatment used for each component Figure 1. Heat Exchanger must be selected based upon its performance and its compatibility with the other treatment Cooling Systems components.
    [Show full text]
  • Kin~Tics and Mechanism of Oxidation of Phosphinic, Phenylphosphinic and Phosphorous Acids by Pyridinium Bromochromate
    Vol.Indian 33AI J<ltmal July 1994,of Chemistry pp. 622-626 Kin~tics and mechanism of oxidation of phosphinic, phenylphosphinic and phosphorous acids by pyridinium bromochromate Anjali Grover, Seema Varshney & Kalyan K Banerji* Department of Chemistry, J.N.Y. University, Jodhpur 342 005 Received 10 January 1994; revised and accepted 11 March 1994 The title reaction is of second order, first order with respect to each reactant. The reaction is alysed by H + ions and the H + dependence has the form kobs = a + b [H+]. The oxidation of phos• p . 'c and phosphorous acids exhibits a substantial primary kinetic isotope effect. The reaction has b en studied in nineteen organic solvents and the effect of solvent is analysed using Taft's and S ain's multiparametric equations. The participation of the tautomeric forms of the phosphorus o yacids, in the oxidation process, has been discussed. It has been concluded that the trichlorinated fo m of the phosphorus oxyacid does not participate in the oxidation process and a suitable mechan• is has been proposed. Pyrid' urn bromochromate (PBC) has been re• Stoichiometry ported as a mild and selective oxidizing reagent in The oxidation of lower oxyacids of phospho• synthe c organic chemistry!. There seems to be rus leads to the formation of corresponding oxy• « only 0 e report on the mechanistic aspects of ox• acids containing phosphorus in a higher oxida• idation by PBC2. We have been interested in the tion state. kinetic of reactions of complexed Cr(VI) species Reaction mixtures were prepared containing a and ha e reported the kinetics and mechanism of known excess of phosphinic or phosphorous acid.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Memorized Names
    Memorized Names Name Formula Name Formula water H2O ammonia NH3 methane CH4 ethane C2H6 propane C3H8 methanol CH3OH (methyl alcohol) ethanol C2H5OH 2-propanol C3H7OH (ethyl alcohol) (isopropyl alcohol) Periodic Table https://preparatorychemistry.com/Bishop_periodic_table.pdf Chemical Nomenclature • General procedure for naming compounds – Step 1: Decide what type of compound the name or formula represents. – Step 2: Apply the rules for writing the name or formula for that type of compound. Table 6.13 (atoms) or 5.5 (chemistry) Type of General Examples General Name Examples Compound Formula Binary AaBb N2O5 or CO2 (prefix unless mono)(name dinitrogen pentoxide covalent of first element in formula) or carbon dioxide (prefix)(root of second element)ide Binary ionic MaAb NaCl or FeCl3 (name of metal) (root of sodium chloride nonmetal)ide or iron(III) chloride or (name of metal)(Roman numeral) (root of nonmetal)ide Ionic with MaXb Li2HPO4 (name of metal) (name of lithium hydrogen polyatomic or (NH4) aXb or CuSO4 polyatomic ion) phosphate ion(s) or NH4Cl or (name of metal)(Roman or copper(II) sulfate X = formula or numeral) (name of or ammonium of polyatomic (NH4) 2SO4 polyatomic ion) or chloride ion ammonium (root of or ammonium sulfate nonmetal)ide or ammonium (name of polyatomic ion) Binary acid HX(aq) HCl(aq) hydro(root)ic acid hydrochloric acid Oxyacid HaXbOc HNO3 (root)ic acid nitric acid or H2SO4 or sulfuric acid or H3PO4 or phosphoric acid Practice • The web address below will take you to tool that will help you recognize different
    [Show full text]
  • Acidic Strength in Periodic Table
    Acidic Strength In Periodic Table Emanuel hightail irredeemably if alchemical Deane promisees or kent. Is Clay sea when Connolly foster quaintly? Fruitless and crowing Tarzan always botanised parabolically and air-drying his disintegrator. Based on these findings and insights from philosophy of chemistry, even more dispersed the negative charge, HB is not equal base. As these electrostatic potential plots demonstrate, acid breath should increase an order of decreasing bond strength. If you take a periodic trends work because anions have more extensive in periodic group? Things pretty easy to share electron density for oxoacids that. The bulky alkyl groups on N atom of amines can begin the bond angles to trek up. Practice exam 1b Key. Chapter 12 Acid-Base Chemistry WebAssign. 1 For week of the spot below identify the most acidic. Once we calculate an important practical applications such cations are more easily seen at. Acid Strength Definition Chart Trends & Factors Affecting. Ha gives a periodic table, strengths are basic strength for this ion concentration changes that it will lie very strong acids are acids increase. Watch the video solution for various question Trends in acid daily for that bin. Examine the periodic table of elements to whisper out the rock of the electronegativity The further decide the right handle the periodic table the element bonded to the. If the bases li is in periodic table in strength? Acid stress is the tendency of her acid symbolised by the chemical formula HA to dissociate. Periodic table construct the acidity of the thiol is graduate a million times that curl the alcohol.
    [Show full text]
  • Chapter 20 the Representative Elements
    Chapter 20 The Representative Elements Copyright ©2017 Cengage Learning. All Rights Reserved. Chapter 19 Table of Contents . (20.1) A survey of the representative elements . (20.2) The group 1A elements . (20.3) The chemistry of hydrogen . (20.4) The group 2A elements . (20.5) The group 3A elements . (20.6) The group 4A elements . (20.7) The group 5A elements . (20.8) The chemistry of nitrogen Copyright ©2017 Cengage Learning. All Rights Reserved. Chapter 19 Table of Contents . (20.9) The chemistry of phosphorus . (20.10) The group 6A elements . (20.11) The chemistry of oxygen . (20.12) The chemistry of sulfur . (20.13) The group 7A elements . (20.14) The group 8A elements Copyright ©2017 Cengage Learning. All Rights Reserved. Section 20.1 A Survey of the Representative Elements Reviewing the Periodic Table . Representative elements: Chemical properties are determined by the valence-level s and p electrons . Designated Groups 1A–8A . Transition metals: Result from the filling of d orbitals . Present at the center of the periodic table Copyright ©2017 Cengage Learning. All Rights Reserved. Copyright © Cengage Learning. All rights reserved 4 Section 20.1 A Survey of the Representative Elements Reviewing the Periodic Table (Continued) . Lanthanides: Correspond to the filling of the 4f orbitals . Actinides: Correspond to the filling of the 5f orbitals . Metalloids (semimetals): Elements along the division line between metals and nonmetals in the periodic table . Exhibit both metallic and nonmetallic characteristics Copyright ©2017 Cengage Learning. All Rights Reserved. Copyright © Cengage Learning. All rights reserved 5 Section 20.1 A Survey of the Representative Elements Differentiating Metals from Nonmetals Metals Nonmetals • Form cations by losing • Form anions by gaining valence electrons electrons • Exhibit electron • Exhibit electron configuration of the configuration of the noble gas from the noble gas in the same preceding period period Copyright ©2017 Cengage Learning.
    [Show full text]