Curricular Axis Standard Competencies

Total Page:16

File Type:pdf, Size:1020Kb

Curricular Axis Standard Competencies SUBJECT GRADE LEARNING UNIT NATURAL SCIENCES 9TH HOW TO RELATE THE COMPONENTS OF THE WORLD TITLE OF LEARNING OBJECT How does water transform the minerals in rocks CURRICULAR AXIS Living environment STANDARD Record my observations and results by using diagrams, graphs COMPETENCIES and tables. LEARNING OBJECTIVES 1. To make short presentations of the acid compounds (oxyacid and hydracids) and hydroxides contained in products used in the industry or at home. 2. To explain in short conversations, the influence of acids (oxyacids- hydracids) and hydroxides in natural and human- induced phenomena in the planet. 3. To establish relations between metals, non-metals and the formation of acids and hydroxides. SKILLS/ KNOWLEDGE S/K 1: Illustrate the paths to obtain acids (oxyacids and hydracids) and hydroxides and establishes relations with the organization of the periodic table of elements. S/K2: Provide examples of applications and uses of acids and hydroxides. S/K3: Differentiate the various ways in which an acid or a hydroxide can be named. S/K4: Represent and describes the chemical equations of salt formation. S/K 5: Explain acid rain and inquires about the natural and human processes behind it. S/K 6: Enquire about the weathering process. LEARNING FLOW Introduction Objectives Activity 1: Obtaining acids ( oxyacids - hydracid) and hydroxides Salt formation Applications in industry and domestic activities Activity 2: Nomenclature of acids (oxyacids - hydracid), hydroxides and salt. Activity 3: •Acid rain • Weathering Abstract Homework Evaluation Glossary ASSESSMENT This learning object is intended for the student to find a simple, GUIDELINE didactic and contextual guide. Likewise, students must develop the guide completely, including the different activities of this LO, by using the diverse tools and autonomous work suggested here. This will ensure successful understanding of the topic. Stage Learning Teaching/Learning Activities Recommended flow Resources Introduction Introduction The teacher presents the corresponding text so that it is familiar to the student. Animation The intention is to make this topic easy and understandable. Introduction On a daily basis, people use substances made up of acids and bases at a domestic, as well as an industrial level. In the countryside, farmers use fertilizers composed of nitric and sulfuric acids in their crops. For obtaining the glass needed for making cups or house windows, they use hydrofluoric acid. In addition, calcium hydroxide is often used in dentistry procedures, among other. For instance, when we do the house cleaning, it is common to use products like cleansers or bleaches for floors or restrooms. Have you noticed you cannot sniff these substances? Have you realized people pour little quantities of these substances on surfaces? Generally, these substances need to be mixed with plenty of water. It is usual to hear about a salt called sodium hypochlorite, this is the essential component of cleansers or bleach, and it is highly corrosive, with a strong odor and should be used with caution. As you will see, both acids, hydroxides and salts are part of many products used at home and in the industry. In this section, you will learn how these substances are formed, why they are called in such particular ways and how they are related to human activities and natural phenomena. The teacher shows students the importance of acids, hydroxides and salts in everyday life ; relate different examples to domestic and industrial level . Development Activity 1 S/K 1: Illustrates the paths to obtain Students’ material and acids (oxyacid and hydracids) and animation resource hydroxides and establishes relations with about the geological the organization of the periodic table of eras. elements. S/K 2: Provides examples of implementation and uses of acids and hydroxides. S/K 4: Represents and describes the chemical equations of salt formation. The first activity addresses the issues about acids. To do this, the teacher can use the tables and examples given in the same way, so that the student have a better understanding. Initially, the teacher begins by explaining the topic with a brief explanation THE OBTAINING OF ACIDS (OXYACIDS- HYDRACIDS) AND HYDROXIDES ACIDS: Acids are chemical substances that have the following features: They taste bitter They are corrosive for your skin They redden certain vegetal colorants They dissolve other substances They attack metals by releasing H2 They lose their properties when reacting with bases Acids are substances which transfer protons (H+) in an aqueous medium, they taste bitter and have an inferior pH than 7 (Mondragón et al, 2005, pag 226 According to the classic theory of electrolytic ionization, developed by Arrenhius (1859- 1927), the electrolytes dissolved in water dissociate directly in charged particles (positive and negative) called ions. Those electrolytes with ions that cause the dissolution to be acid o basic are of great interest for the analytic chemistry. According to the same theory, the ions that give origin to the acid behavior are the protons.(Mondragón et al, 2005, pag 228). HX H+ + X- Example: HCl (aqueous solution) Cl- + H+ H2SO4 (aqueous 2- solution) SO4 + 2 H Figure 1. Bottle of hydrochloric acid, normally known as muriatic acid;it is often used in industrial proceses such as pickling of Steel and treatment of minerals. Acids are divided into: Acids Hydracids Oxyacids Figure 2. Classification of acids. (Own creation, 2016). Hydracids: They are compounds which are formed when some non-metals (elements belonging to group VI A and VII A, with less oxidation. 1- and 2- ) react with hydrogen. The general equation for obtaining hydracids is: -n X + H2 HnX Its general formula is: HnX Where: H= Hydrogen, X = Element Non- Metal, n= Oxidation state of non-metal Examples: Cl + H2 2HCl Hydrochloric Acid Se + H2 H2Se Hydroselenic acid The elements are: Sulfur, selenium and tellurium from group VI A. They have an oxidation state of 1-. Fluorine, chlorine, bromine and iodine from group VII A. They have an oxidation state of 1-. Oxyacid: They are ternary compounds formed when an acidic oxide reacts with water, its structure consists of hydrogen, oxygen and a nonmetallic element; in these chemicals, nonmetal occupies the central position and has positive oxidation number. Oxygen will always have oxidation state 2- and Hydrogen 1+ (Mondragon et al, 2005 , p. 301). The general equation of an oxyacid is: X2On + H2O HXO It is general formula is: HXO Where: H= Hidrógeno, X= Element Non- Metal, O= Oxygen, Examples: N2O5 + H2O H2N2O6 HNO3 Nitric oxide + water ( simplifying subscript) Nitric Acid SO2 + H2O H2SO3 Sulfur Dioxide + Water Sulfurous Acid Did you know that…? A binary compound is one which chemical formula is composed of two kinds of elements; for example, (CO) carbon monoxide, produced when we start vehicle engines; and a ternary compound is one which chemical formula is composed of three kinds of elements. For example, Fe (OH) 2, used in water purification of the metallurgical sector. HYDROXIDES Hydroxides have features like : They taste bitter They Turn litmus paper blue They feel Soapy when you touch them They Release hydroxyl ions when dissolved in water They are obtained as a product of reaction between a basic oxide and water: basic oxide + water hydroxide. They are ionic compounds whose link is established between a cation (metal) and one or more hydroxyl ions (OH-) (Cardenas et al, 2001, p. 185). The general equation of an hydroxide is: M2On + H2O M(OH)n Basic oxide + water Hydroxide Its general formula is: M(OH)n Where: M= Metal, n= Metal oxidation state , OH = hydroxyl ions Examples: K2O + H2O 2KOH Basic oxide + water Potassium hydroxide Fe2O3 + 3H2O 2Fe(OH)3 Ferric oxide + Water Ferric Hydroxide Learning activity Through this learning activity, you will strengthen your knowledge about the formation of the compounds already presented by analyzing the formulation of each. So that eventually you can classify them. In pairs, do the following exercises: Write in front of each of the compounds listed in Table 1 their corresponding classification: oxyacid, hydracid and hydroxide. COMPOUNDS CLASSIFICATION H2 + F2 HF (Hydrofluoric acid) MgO + H2O Mg(OH)2 (Magnesium hydroxide) H2 + S H2S (Sulphuric acid) Cl2O3 + H2O HClO2 (Chlorous acid) Al2O3 + 3H2O 2Al(OH)3 (Aluminum hydroxide) Cl2O7 + H2O HClO4 (Perchloric acid ) Table 1. Learning activity. Relationship of compounds and its classification. (Own Authorship , 2016) Solution: 1. Hydracid 2. Hydroxide 3. Hydracid 4. Oxyacid 5. Hydroxide 6. Oxyacid SALT FORMATION They have features like (Herrera et al, 1984 , p . 54): -In solid state, they do not conduct electricity (insulators). In liquid state, they are classified as soluble, slightly soluble and insoluble. - They are compounds produced when an acid reacts to a hydroxide, they can be divided into : It is produced from a Oxoacid tertiary compound formed salts by a metal, a nonmetal and oxygen Salts It is produced from a hydracid with a hydroxide Halid salt formed by a metal and a nonmetal (halogen) Figure 5. Classification of the salts . (Own Authorship, 2016) General equation of oxoacid salts: HXO + M(OH)n XMO Oxoacid + Hydroxide Oxoacid salt Its general formula is: XMO Where: Being X= non- metal which gives the name to the acid source, M = Metal replacing the hydrogen source of acid, and O = Oxygen. Examples: H2SO4 + Mg(OH)2 MgSO4 Sulfuric Acid + Magnesium hydroxide salt Halide salts general equation : HnX + M(OH)n XM Hydracid + Hydroxide Halide Salt Its general formula is: XM Where: X= Non-metal and M= metal Examples: HF + KOH KF Potassium fluoride HCl + Na(OH) NaCl Sodium chloride In this unit you should explain the uses of some compounds previously seen in the industry and at home. Begin with a brief introduction, which needs to be accompanied by several photos for greater understanding of the industrial context as students look at them. INDUSTRIAL AND DOMESTIC APPLICATIONS We will analyze different uses of some oxyacids, hydracids, hydroxides and salts on daily activities.
Recommended publications
  • Hypochlorous Acid Handling
    Hypochlorous Acid Handling 1 Identification of Petitioned Substance 2 Chemical Names: Hypochlorous acid, CAS Numbers: 7790-92-3 3 hypochloric(I) acid, chloranol, 4 hydroxidochlorine 10 Other Codes: European Community 11 Number-22757, IUPAC-Hypochlorous acid 5 Other Name: Hydrogen hypochlorite, 6 Chlorine hydroxide List other codes: PubChem CID 24341 7 Trade Names: Bleach, Sodium hypochlorite, InChI Key: QWPPOHNGKGFGJK- 8 Calcium hypochlorite, Sterilox, hypochlorite, UHFFFAOYSA-N 9 NVC-10 UNII: 712K4CDC10 12 Summary of Petitioned Use 13 A petition has been received from a stakeholder requesting that hypochlorous acid (also referred 14 to as electrolyzed water (EW)) be added to the list of synthetic substances allowed for use in 15 organic production and handling (7 CFR §§ 205.600-606). Specifically, the petition concerns the 16 formation of hypochlorous acid at the anode of an electrolysis apparatus designed for its 17 production from a brine solution. This active ingredient is aqueous hypochlorous acid which acts 18 as an oxidizing agent. The petitioner plans use hypochlorous acid as a sanitizer and antimicrobial 19 agent for the production and handling of organic products. The petition also requests to resolve a 20 difference in interpretation of allowed substances for chlorine materials on the National List of 21 Allowed and Prohibited Substances that contain the active ingredient hypochlorous acid (NOP- 22 PM 14-3 Electrolyzed water). 23 The NOP has issued NOP 5026 “Guidance, the use of Chlorine Materials in Organic Production 24 and Handling.” This guidance document clarifies the use of chlorine materials in organic 25 production and handling to align the National List with the November, 1995 NOSB 26 recommendation on chlorine materials which read: 27 “Allowed for disinfecting and sanitizing food contact surfaces.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    A Comparison of Halogeno and Oxyacids L53 A COMPARISON OF HALOGENO AND OXYACIDS J. A. Nieuwland and T. H. Vaughn, University of Notre Dame In a recent paper originating in this department and sent to one of the chemical journals for publication the term "fluo acid" was used to designate a flourine containing acid which could be considered as having been formed by substituting two flourine atoms for each oxygen atom in an oxyacid. Criticism of this term on the ground that it was novel and unusual resulted. The paper mentioned being essentially organic in its nature it was impossible to explain the matter sufficiently except as a separate discussion. The purpose of this paper is to make an attempt to establish the term "halogeno acid" as a general name for acids in which the halogens may be considered to replace the oxygen in oxyacids and to establish the terms, fluo, chloro, bromo, and iodo as the specific names of these acids where the halogen involved is flourine, chlorine, bromine, and iodine respectively. As a matter of fact these names have been used in several cases and are accepted terms for those cases, i.e., fluoboric acid, bromostannic acid, fluoplumbic acid, fluosilicic acid, etc. When various molecular portions of water are added to the anhydrides of the acid forming elements, the several oxyacids are produced. B 2 3 +H 2 0^2HB0 2 B 2 2 +3H 2 0->2H 3 B0 3 In an analogous manner when the halogen acids are added to the halogen compounds corresponding to the anhydrides of the acid forming elements, the halogeno acids are formed.
    [Show full text]
  • Atoms, Molecules, Ions, and Inorganic Nomenclature
    Atoms, Molecules, Ions, and Inorganic Nomenclature Brown, LeMay Ch 2 AP Chemistry Monta Vista High School 2.2: Evidence for the Atomic Theory 1. J.J. Thomson’s cathode ray tube: discovery of electrons and the e- charge-to-mass ratio ¶ In a vacuum chamber, flow of high voltage (emitted from cathode to anode) is deflected by magnetic & electrical fields (animation: http://highered.mcgraw-hill.com/olcweb/cgi/pluginpop.cgi?it=swf::100%::100%::/sites/dl/free/ 0072512644/117354/01_Cathode_Ray_Tube.swf::Cathode%20Ray%20Tube) 2 2. Robert Millikan’s oil drop: determines charge of e- (and thus the mass) ¶ “Atomized” drops of oil picked up small charges (integral numbers), and balanced oil drops in an electrical & gravitational field http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/004_MILLIKANOIL.MOV 3. Ernest Rutherford’s gold foil: discovery of nucleus as center of positive charge ¶ Alpha particles from radioactive source are deflected from positive gold atom nuclei http://www.mhhe.com/physsci/ chemistry/animations/ chang_2e/ rutherfords_experiment.swf 2.3: Structure of the Atom Figure 1: Subatomic particles (Table 2.1; 1 amu = 1.66054 x 10-24 g). Subatomic Charge Location Mass particle Proton, p+ +1.6 x 10-19 C nucleus 1.0073 amu Neutron, n None nucleus 1.0087 amu Electron, e- -1.6 x 10-19 C e- cloud 5.486 x 10-4 amu 5 Vocabulary n Atomic number: number of p+ (determines the element) n Mass number: sum of p+ and n (determines the isotope) n Isotopes: atoms of an element that differ in the number of neutrons n Isobars: atoms of different elements with same atomic mass but different atomic number.
    [Show full text]
  • Humidity-Sensing Component Composition
    Patentamt JEuropaischesEuropean Patent Office © Publication number: 0 242 834 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 87105802.0 © Int.CI.3: G 01 N 27/12 @ Dateoffiling: 21.04.87 © Priority: 24.04.86 JP 93211/86 ©Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC. 24.04.86 JP 93212/86 5-2,Marunouchi2-chomeChiyoda-Ku 23.12.86 JP 305392/86 Tokyo(JP) © Inventor: Sugio, Akitoshi © Dateof publication of application: 382-155, Besho Ohaza-Sashiougiryo 28.10.87 Bulletin 87/44 Ohmiya-shiSaitama-Ken(JP) © Designated Contracting States: © Inventor: Shimomura.Tadashi FR GB 11 05-21, Higashifukai Nagareyama-shi Chiba-Ken(JP) @ Inventor: Wakabayashi, Hidechika 6-101, Nishlkubocho 15-chome Tokiwadaira Matsudo-shl Chiba-Ken(JP) © Inventor: Kondo,Osamu 25-15-201, Niijyuku 5-chome Katsushika-ku Tokyo(JP) @ Inventor: Ogasawara, Kazuharu 1 1 -1 6, Kanamachi 5-chome Katsushika-ku Tokyo(JP) © Inventor: Nishizawa, Chiharu 17-1,Kanegasaku Matsudo-shl Chiba-Ken(JP) © Representative: Blumbach Weser Bergen Kramer Zwirner Hoffmann Patentanwalte Radeckestrasse43 D-8000Munchen60(DE) Humidity-sensing component composition. © A humidity-sensing component composition includes a metallic oxide and a chalcogen oxyacid salt represented by a general formula AxByOz where A is one of an alkali metal and an alkaline earth metal, B is one of sulphur, selenium, and tellurium, O is oxygen, x is 1 to 2, y 1 to 5, and z 2 to 7. The chalcogen oxyacid salt is blended by an amount of 0.01 to 99.99 mol% in the metallic oxide with the sum of the metallic oxide and the chalcogen oxyacid salt as a reference.
    [Show full text]
  • Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY
    Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY You try #1: 1) For each compound, put a check () in the box for the appropriate class/subclass. Compound Ionic, Ionic, Molecular Acid, Acid, Formula Type I Type II (covalent) Binary Oxyacid How did you know that? CCl4 All nonmetals, no H in front SnCl2 Sn is not a Type I metal HCl(aq) H + one nonmetal ZnCl2 Type I metal (always +2) NH4Cl NH4 belongs in Type I H2CO3(aq) H + 2 nonmetals (with O) MgCO3 Type I metal (always +2) MnCO3 Mn is not a Type I metal CO2 All nonmetals, no H in front You try #2: 2) Now, let’s apply these rules to each of the compounds that you categorized in question 1). Compound Class/ Name Formula subclass How did you know that? CCl4 Molecular carbon Don’t use mono with first element. Change ending of (covalent) tetrachloride second element to –ide. SnCl2 Ionic, tin(II) chloride We need to figure out the charge on the Sn (since it Type II is a type II metal). The Sn must cancel the 2- charge on the Cl ions. HCl(aq) Acid, hydrochloric Binary acids are the only ones that start with Binary acid “hydro”. SrCl2 Ionic, strontium Sr is always +2 so we don’t need roman numerals. Type I chloride NH4Cl Ionic, ammonium NH4 is the one nonmetal that fits into the Type I Type I chloride ionic compound. 2- H2CO3(aq) Acid, carbonic acid Knowing that the base ion for this acid (CO3 ) is Oxyacid called “carbonate”, we can figure out that the ending changes to –ic.
    [Show full text]
  • Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 713685, 8 pages http://dx.doi.org/10.1155/2014/713685 Research Article Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water Jiancheng Wang,1 Zhaoliang Peng,1 Bing Wang,1 Lina Han,1,2 Liping Chang,1 Weiren Bao,1 and Gang Feng3 1 State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China 2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 3 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China Correspondence should be addressed to Weiren Bao; [email protected] and Gang Feng; [email protected] Received 9 February 2014; Accepted 14 March 2014; Published 4 May 2014 Academic Editor: Wen Zeng Copyright © 2014 Jiancheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aseriesofmanganesesalts(Mn(NO3)2, MnCl2, MnSO4,andMn(Ac)2) and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate) were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD), X- ray photoelectron spectrometer (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to characterize the structure and morphology of the solid products. It was found that MnO2,Mn2O3,andMn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes.
    [Show full text]
  • Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide
    ® Basic Chemicals Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide Introduction temperature of the cooling water. From the heat Chlorine dioxide, which has a long history of use exchanger the hot cooling water goes to the top in drinking water disinfection, is increasing its of the cooling tower, shown in Figure 2, it is share of the cooling tower microbiological sprayed over the fill and slowly falls to the sump. control market. In large measure, this is the The fan at the top of the tower induces a draft, result of chlorine dioxide's benefits when which causes water evaporation and cooling. compared to other cooling tower biocides: it acts From the sump cool water is pumped back to rapidly; is less sensitive to cooling water the heat exchanger. contamination and pH changes; has few side reactions, and is environmentally friendly. This Cooling System Treatment brochure covers the theory and practical Treatment of cooling systems has two basic application of chlorine dioxide to cooling towers. objectives: to protect and extend the life of the cooling system and to insure good heat transfer and removal. Any fouling of the heat exchanger surface by scale, debris, or microbiological growth decreases the heat transfer efficiency. Corrosion destroys heat exchanger surfaces and causes leaks that result in mixing of the cooling water and the process fluid. Consequently there are three components to a cooling water treatment program: 1) microbiological control, 2) scale and deposit control and 3) corrosion control. The treatment used for each component Figure 1. Heat Exchanger must be selected based upon its performance and its compatibility with the other treatment Cooling Systems components.
    [Show full text]
  • Kin~Tics and Mechanism of Oxidation of Phosphinic, Phenylphosphinic and Phosphorous Acids by Pyridinium Bromochromate
    Vol.Indian 33AI J<ltmal July 1994,of Chemistry pp. 622-626 Kin~tics and mechanism of oxidation of phosphinic, phenylphosphinic and phosphorous acids by pyridinium bromochromate Anjali Grover, Seema Varshney & Kalyan K Banerji* Department of Chemistry, J.N.Y. University, Jodhpur 342 005 Received 10 January 1994; revised and accepted 11 March 1994 The title reaction is of second order, first order with respect to each reactant. The reaction is alysed by H + ions and the H + dependence has the form kobs = a + b [H+]. The oxidation of phos• p . 'c and phosphorous acids exhibits a substantial primary kinetic isotope effect. The reaction has b en studied in nineteen organic solvents and the effect of solvent is analysed using Taft's and S ain's multiparametric equations. The participation of the tautomeric forms of the phosphorus o yacids, in the oxidation process, has been discussed. It has been concluded that the trichlorinated fo m of the phosphorus oxyacid does not participate in the oxidation process and a suitable mechan• is has been proposed. Pyrid' urn bromochromate (PBC) has been re• Stoichiometry ported as a mild and selective oxidizing reagent in The oxidation of lower oxyacids of phospho• synthe c organic chemistry!. There seems to be rus leads to the formation of corresponding oxy• « only 0 e report on the mechanistic aspects of ox• acids containing phosphorus in a higher oxida• idation by PBC2. We have been interested in the tion state. kinetic of reactions of complexed Cr(VI) species Reaction mixtures were prepared containing a and ha e reported the kinetics and mechanism of known excess of phosphinic or phosphorous acid.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Memorized Names
    Memorized Names Name Formula Name Formula water H2O ammonia NH3 methane CH4 ethane C2H6 propane C3H8 methanol CH3OH (methyl alcohol) ethanol C2H5OH 2-propanol C3H7OH (ethyl alcohol) (isopropyl alcohol) Periodic Table https://preparatorychemistry.com/Bishop_periodic_table.pdf Chemical Nomenclature • General procedure for naming compounds – Step 1: Decide what type of compound the name or formula represents. – Step 2: Apply the rules for writing the name or formula for that type of compound. Table 6.13 (atoms) or 5.5 (chemistry) Type of General Examples General Name Examples Compound Formula Binary AaBb N2O5 or CO2 (prefix unless mono)(name dinitrogen pentoxide covalent of first element in formula) or carbon dioxide (prefix)(root of second element)ide Binary ionic MaAb NaCl or FeCl3 (name of metal) (root of sodium chloride nonmetal)ide or iron(III) chloride or (name of metal)(Roman numeral) (root of nonmetal)ide Ionic with MaXb Li2HPO4 (name of metal) (name of lithium hydrogen polyatomic or (NH4) aXb or CuSO4 polyatomic ion) phosphate ion(s) or NH4Cl or (name of metal)(Roman or copper(II) sulfate X = formula or numeral) (name of or ammonium of polyatomic (NH4) 2SO4 polyatomic ion) or chloride ion ammonium (root of or ammonium sulfate nonmetal)ide or ammonium (name of polyatomic ion) Binary acid HX(aq) HCl(aq) hydro(root)ic acid hydrochloric acid Oxyacid HaXbOc HNO3 (root)ic acid nitric acid or H2SO4 or sulfuric acid or H3PO4 or phosphoric acid Practice • The web address below will take you to tool that will help you recognize different
    [Show full text]
  • Acidic Strength in Periodic Table
    Acidic Strength In Periodic Table Emanuel hightail irredeemably if alchemical Deane promisees or kent. Is Clay sea when Connolly foster quaintly? Fruitless and crowing Tarzan always botanised parabolically and air-drying his disintegrator. Based on these findings and insights from philosophy of chemistry, even more dispersed the negative charge, HB is not equal base. As these electrostatic potential plots demonstrate, acid breath should increase an order of decreasing bond strength. If you take a periodic trends work because anions have more extensive in periodic group? Things pretty easy to share electron density for oxoacids that. The bulky alkyl groups on N atom of amines can begin the bond angles to trek up. Practice exam 1b Key. Chapter 12 Acid-Base Chemistry WebAssign. 1 For week of the spot below identify the most acidic. Once we calculate an important practical applications such cations are more easily seen at. Acid Strength Definition Chart Trends & Factors Affecting. Ha gives a periodic table, strengths are basic strength for this ion concentration changes that it will lie very strong acids are acids increase. Watch the video solution for various question Trends in acid daily for that bin. Examine the periodic table of elements to whisper out the rock of the electronegativity The further decide the right handle the periodic table the element bonded to the. If the bases li is in periodic table in strength? Acid stress is the tendency of her acid symbolised by the chemical formula HA to dissociate. Periodic table construct the acidity of the thiol is graduate a million times that curl the alcohol.
    [Show full text]
  • Chapter 20 the Representative Elements
    Chapter 20 The Representative Elements Copyright ©2017 Cengage Learning. All Rights Reserved. Chapter 19 Table of Contents . (20.1) A survey of the representative elements . (20.2) The group 1A elements . (20.3) The chemistry of hydrogen . (20.4) The group 2A elements . (20.5) The group 3A elements . (20.6) The group 4A elements . (20.7) The group 5A elements . (20.8) The chemistry of nitrogen Copyright ©2017 Cengage Learning. All Rights Reserved. Chapter 19 Table of Contents . (20.9) The chemistry of phosphorus . (20.10) The group 6A elements . (20.11) The chemistry of oxygen . (20.12) The chemistry of sulfur . (20.13) The group 7A elements . (20.14) The group 8A elements Copyright ©2017 Cengage Learning. All Rights Reserved. Section 20.1 A Survey of the Representative Elements Reviewing the Periodic Table . Representative elements: Chemical properties are determined by the valence-level s and p electrons . Designated Groups 1A–8A . Transition metals: Result from the filling of d orbitals . Present at the center of the periodic table Copyright ©2017 Cengage Learning. All Rights Reserved. Copyright © Cengage Learning. All rights reserved 4 Section 20.1 A Survey of the Representative Elements Reviewing the Periodic Table (Continued) . Lanthanides: Correspond to the filling of the 4f orbitals . Actinides: Correspond to the filling of the 5f orbitals . Metalloids (semimetals): Elements along the division line between metals and nonmetals in the periodic table . Exhibit both metallic and nonmetallic characteristics Copyright ©2017 Cengage Learning. All Rights Reserved. Copyright © Cengage Learning. All rights reserved 5 Section 20.1 A Survey of the Representative Elements Differentiating Metals from Nonmetals Metals Nonmetals • Form cations by losing • Form anions by gaining valence electrons electrons • Exhibit electron • Exhibit electron configuration of the configuration of the noble gas from the noble gas in the same preceding period period Copyright ©2017 Cengage Learning.
    [Show full text]