Clean Coal by Oxyacidification H

Total Page:16

File Type:pdf, Size:1020Kb

Clean Coal by Oxyacidification H Clean Coal by Oxyacidification H. Gokturk1 Ecoken, San Francisco, USA ABSTRACT vapor 15%, carbon dioxide 10%, oxygen gas (O2) 5% [3]. A comparison of the composition of stack emissions with Coal has become a controversial fuel due to various that of air shows that the fraction of (a) oxygen gas pollutants and carbon dioxide generated during combustion. decreases significantly (from 20% to 5%), (b) carbon Regulated pollutants include nitrogen oxides and sulfur dioxide increases dramatically (from 380 ppm to 10%), and oxides which react with the water vapor in the atmosphere (c) water vapor increases significantly (from several percent to form acid rain. Carbon dioxide also reacts with water to 15%). These changes which are applicable to other molecules to form carbonic acid, which gives rise to ocean hydrocarbon fuels can be attributed to the oxidation of acidification. This research takes advantage of the carbon and hydrogen in the fuel during combustion. Stack acidification tendency of such gaseous pollutants in order to emissions also include the mentioned pollutants in reduce their concentrations. Pollutant molecules in the flue quantities less than 100 ppm [3]. Low concentration of the gas are encouraged to combine with water vapor to form pollutants is due to cleaning processes, such as flue gas droplets of oxyacids which are then separated before the desulfurization and selective catalytic NOx reduction, flue gas is discharged into the air. installed in power plants. Assuming a reduction of ~90% by such cleaning processes, approximate concentration of the Keywords: Clean coal, oxyacid, electron affinity pollutants in the original flue gas is about 1000 ppm (0.1%). One of the adverse impacts of pollutants like NOx and 1 PROBLEM SOx is that these molecules react with the water vapor in the atmosphere to form aerosols of oxyacids which Coal is the most abundant fossil fuel in the world. Coal eventually fall to earth as acid rain. NOx molecules form reserves total about 1 trillion tons which is equivalent to nitrous acid (HNO2) and nitric acid (HNO3). SOx 150 years of production at the current level [1]. Countries molecules form sulfurous acid (H2SO3) and sulfuric acid with the largest reserves include United States (#1), China (H2SO4). Carbon dioxide also reacts with water molecules (#3) and Germany (#6) which are the major industrialized to form carbonic acid (H2CO3). Increasing concentration of economies in America, Asia and Europe, respectively [2]. carbon dioxide in the atmosphere is believed to be the cause Those countries and many others rely heavily on coal of ocean acidification [5]. burning power plants for electricity generation. For + + → example in the US, about half of the electricity is generated H 2 O NO NO2 2HNO2 (1) + → + by using coal due to low cost and plentiful supply. H 2 O 3NO2 NO2 2HNO3 (2) Unfortunately coal has become a controversial fuel due + → H 2 O SO2 H 2 SO3 (3) to various pollutants and carbon dioxide (CO2) generated + → H O SO H SO (4) during combustion [3]. High ranked coals like anthracite or 2 + 3 → 2 4 bituminous coals are reserved for high value applications H 2 O CO2 H 2CO3 (5) such as manufacturing of steel. That leaves low ranked coals like sub-bituminous coal or lignite for power 2 PROPOSED SOLUTION generation. Low rank coals contain less carbon and more impurities like sulfur which gives rise to pollution [2]. One can infer from the past observations that the Regulated pollutants emitted from coal include nitrogen mentioned gaseous pollutants have a natural tendency to oxides (NOx), sulfur oxides (SOx) and mercury. In the US, combine with water to form liquid oxyacids. The approach about 65% of sulfur dioxide emissions (7 Mtons/year), 20% followed in this research to reduce the pollutants in the flue of nitrogen oxide emissions (3 Mtons/year) and 70% of gas is to take advantage of this oxyacidification tendency. mercury emissions (45 tons/year) are attributed to coal Pollutant molecules in the flue gas are encouraged to burning power plants [4]. These percentages could be combine with the water vapor in the flue gas to form higher in developing countries where environmental droplets of oxyacids which are then separated before the regulations are not as well established as in the US. flue gas is discharged into the air. This process can be Typical stack emissions of a coal based power plant euphemistically described as creating acid rain inside the consist of nitrogen gas (N2) about 70% by volume, water power plant. 1 Email: [email protected] NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6276-9 Vol. 3, 2012 753 The cleaning process is illustrated in Fig. 1. Given a flue moments which are important to understand how ions and gas generated by burning coal or other fuel, a charging neutral molecules interact with each other. Flue gas device provides electrons to those molecules which have molecules which have dipolar charge distributions include affinity to accept extra electrons. Molecules which acquire NO, NO2, SO, SO2, H2O, HgO and those with quadrupolar electrons and become ions are allowed to float through the charge distributions include N2, O2, CO2, and SO3. flue gas without losing the charged state so that they can Generally interaction of an ion with a dipole is stronger electrically attract other pollutants and water molecules to than that with a quadrupole. The strength of the interaction form droplets. Pollutants and water molecules brought into between an ion and other molecules in the flue gas can be close proximity by the attraction of the ion react to form quantified by calculating the interaction energy. Interaction oxyacids. Charged droplets containing the oxyacids are between pairs of various molecules and ions has been separated from the rest of the flue gas by manipulating investigated using first principle quantum mechanical them with electric and/or magnetic forces. calculations [7]. Results indicate that interaction energy ranges from 0.5 eV to 0.9 eV for dipolar molecules like 2.1 Electron Affinity of the Pollutants NOx, SOx and H2O {Table 2}. These interaction energies are large enough for the ion to attract and capture dipolar Ability of a molecule to accept an extra electron can be pollutants and water molecules even at the relatively quantified by calculating its electron affinity (Eea) which is elevated temperature of the flue gas. defined as the energy required to detach an electron from its singly charged negative ion [6]. Eea can be calculated from Minus Ion Molecule IE (eV) the quantum mechanical energy of the molecule in the NO2 SO 0.6 neutral state (En) and with an extra electron (Ei). NO2 SO2 0.9 = − NO2 H2O 0.8 E ea E n E i (6) SO H2O 0.7 SO2 H2O 0.8 Most of the molecules have their lowest energy in the SO2 NO 0.5 neutral state, therefore Eea is generally negative. For SO2 NO2 0.5 example, energy of CO2 minus ion is higher than that of neutral CO2 by about 0.9 eV. If CO2 is bombarded with Table 2: Interaction energy (IE) between an ion and dipolar energetic electrons, an electron with more than 0.9 eV molecules as calculated by first principle methods. kinetic energy can get temporarily attached to the molecule. A small number of molecules exhibit positive electron The interaction energy for a quadrupole like N2 is 0.07 affinity. For example energy of O2 minus ion is about 0.6 eV which is comparable to the thermal energy of the flue eV lower than that of neutral O2. Such a molecule accepts gas. Another quadrupole of interest is CO2 which has an an extra electron readily and becomes a relatively stable electron distribution where carbon is slightly positive, negative ion. An investigation of the electron affinity of 0.74Qe and oxygens are slightly negative, -0.37Qe (Qe: molecules typically encountered in the flue gas of a coal unit charge). When CO2 is in the vicinity of a negative ion, plant indicates that many of the pollutants including NO2, carbon gets attracted to the ion, whereas oxygens get SO, SO2, SO3, HgO have Eea>0 {Table 1}. Hence these repelled by the ion which bends the molecule from a linear molecules have the potential to serve as ionic scavengers to an angular shape (Fig. 2). The shape change creates a which can attract and capture other pollutants. small dipole which yields an interaction energy of 0.3 eV. Although this energy is smaller than those of the other Formula Molecule Eea (eV) dipoles mentioned above, it is large enough to enhance the NO Nitrogen monoxide -0.9 absorption of CO2 into the droplets {Table 2}. NO2 Nitrogen dioxide 2.3 SO Sulfur monoxide 1.3 Minus Ion Molecule IE (eV) 2 2 SO2 Sulfur dioxide 1.6 NO N <0.1 2 2 SO3 Sulfur trioxide 1.2 NO CO 0.4 HgO Mercury oxide 2.4 SO N2 <0.1 2 CO2 Carbon dioxide -0.9 SO CO 0.3 SO2 N2 <0.1 Table 1: Electron affinity (Eea) of the pollutants obtained SO2 CO2 0.3 by first principle quantum mechanical calculations [7]. Table 3: Interaction energy (IE) between an ion & quadru- 2.2 Interaction Energy polar molecules as calculated by first principle methods. Electron distribution of a molecule provides information One can conclude from this analysis that the ions about dipole, quadrupole and higher order electronic created within the flue gas would attract dipolar pollutants 754 NSTI-Nanotech 2012, www.nsti.org, ISBN 978-1-4665-6276-9 Vol. 3, 2012 and water molecules to form droplets. CO2 which exists in 5) These droplets are separated from the rest of the large quantities within the flue gas will also be absorbed flue gas by manipulating them with electric and/or into these droplets.
Recommended publications
  • Hypochlorous Acid Handling
    Hypochlorous Acid Handling 1 Identification of Petitioned Substance 2 Chemical Names: Hypochlorous acid, CAS Numbers: 7790-92-3 3 hypochloric(I) acid, chloranol, 4 hydroxidochlorine 10 Other Codes: European Community 11 Number-22757, IUPAC-Hypochlorous acid 5 Other Name: Hydrogen hypochlorite, 6 Chlorine hydroxide List other codes: PubChem CID 24341 7 Trade Names: Bleach, Sodium hypochlorite, InChI Key: QWPPOHNGKGFGJK- 8 Calcium hypochlorite, Sterilox, hypochlorite, UHFFFAOYSA-N 9 NVC-10 UNII: 712K4CDC10 12 Summary of Petitioned Use 13 A petition has been received from a stakeholder requesting that hypochlorous acid (also referred 14 to as electrolyzed water (EW)) be added to the list of synthetic substances allowed for use in 15 organic production and handling (7 CFR §§ 205.600-606). Specifically, the petition concerns the 16 formation of hypochlorous acid at the anode of an electrolysis apparatus designed for its 17 production from a brine solution. This active ingredient is aqueous hypochlorous acid which acts 18 as an oxidizing agent. The petitioner plans use hypochlorous acid as a sanitizer and antimicrobial 19 agent for the production and handling of organic products. The petition also requests to resolve a 20 difference in interpretation of allowed substances for chlorine materials on the National List of 21 Allowed and Prohibited Substances that contain the active ingredient hypochlorous acid (NOP- 22 PM 14-3 Electrolyzed water). 23 The NOP has issued NOP 5026 “Guidance, the use of Chlorine Materials in Organic Production 24 and Handling.” This guidance document clarifies the use of chlorine materials in organic 25 production and handling to align the National List with the November, 1995 NOSB 26 recommendation on chlorine materials which read: 27 “Allowed for disinfecting and sanitizing food contact surfaces.
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    A Comparison of Halogeno and Oxyacids L53 A COMPARISON OF HALOGENO AND OXYACIDS J. A. Nieuwland and T. H. Vaughn, University of Notre Dame In a recent paper originating in this department and sent to one of the chemical journals for publication the term "fluo acid" was used to designate a flourine containing acid which could be considered as having been formed by substituting two flourine atoms for each oxygen atom in an oxyacid. Criticism of this term on the ground that it was novel and unusual resulted. The paper mentioned being essentially organic in its nature it was impossible to explain the matter sufficiently except as a separate discussion. The purpose of this paper is to make an attempt to establish the term "halogeno acid" as a general name for acids in which the halogens may be considered to replace the oxygen in oxyacids and to establish the terms, fluo, chloro, bromo, and iodo as the specific names of these acids where the halogen involved is flourine, chlorine, bromine, and iodine respectively. As a matter of fact these names have been used in several cases and are accepted terms for those cases, i.e., fluoboric acid, bromostannic acid, fluoplumbic acid, fluosilicic acid, etc. When various molecular portions of water are added to the anhydrides of the acid forming elements, the several oxyacids are produced. B 2 3 +H 2 0^2HB0 2 B 2 2 +3H 2 0->2H 3 B0 3 In an analogous manner when the halogen acids are added to the halogen compounds corresponding to the anhydrides of the acid forming elements, the halogeno acids are formed.
    [Show full text]
  • Atoms, Molecules, Ions, and Inorganic Nomenclature
    Atoms, Molecules, Ions, and Inorganic Nomenclature Brown, LeMay Ch 2 AP Chemistry Monta Vista High School 2.2: Evidence for the Atomic Theory 1. J.J. Thomson’s cathode ray tube: discovery of electrons and the e- charge-to-mass ratio ¶ In a vacuum chamber, flow of high voltage (emitted from cathode to anode) is deflected by magnetic & electrical fields (animation: http://highered.mcgraw-hill.com/olcweb/cgi/pluginpop.cgi?it=swf::100%::100%::/sites/dl/free/ 0072512644/117354/01_Cathode_Ray_Tube.swf::Cathode%20Ray%20Tube) 2 2. Robert Millikan’s oil drop: determines charge of e- (and thus the mass) ¶ “Atomized” drops of oil picked up small charges (integral numbers), and balanced oil drops in an electrical & gravitational field http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/004_MILLIKANOIL.MOV 3. Ernest Rutherford’s gold foil: discovery of nucleus as center of positive charge ¶ Alpha particles from radioactive source are deflected from positive gold atom nuclei http://www.mhhe.com/physsci/ chemistry/animations/ chang_2e/ rutherfords_experiment.swf 2.3: Structure of the Atom Figure 1: Subatomic particles (Table 2.1; 1 amu = 1.66054 x 10-24 g). Subatomic Charge Location Mass particle Proton, p+ +1.6 x 10-19 C nucleus 1.0073 amu Neutron, n None nucleus 1.0087 amu Electron, e- -1.6 x 10-19 C e- cloud 5.486 x 10-4 amu 5 Vocabulary n Atomic number: number of p+ (determines the element) n Mass number: sum of p+ and n (determines the isotope) n Isotopes: atoms of an element that differ in the number of neutrons n Isobars: atoms of different elements with same atomic mass but different atomic number.
    [Show full text]
  • Humidity-Sensing Component Composition
    Patentamt JEuropaischesEuropean Patent Office © Publication number: 0 242 834 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 87105802.0 © Int.CI.3: G 01 N 27/12 @ Dateoffiling: 21.04.87 © Priority: 24.04.86 JP 93211/86 ©Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC. 24.04.86 JP 93212/86 5-2,Marunouchi2-chomeChiyoda-Ku 23.12.86 JP 305392/86 Tokyo(JP) © Inventor: Sugio, Akitoshi © Dateof publication of application: 382-155, Besho Ohaza-Sashiougiryo 28.10.87 Bulletin 87/44 Ohmiya-shiSaitama-Ken(JP) © Designated Contracting States: © Inventor: Shimomura.Tadashi FR GB 11 05-21, Higashifukai Nagareyama-shi Chiba-Ken(JP) @ Inventor: Wakabayashi, Hidechika 6-101, Nishlkubocho 15-chome Tokiwadaira Matsudo-shl Chiba-Ken(JP) © Inventor: Kondo,Osamu 25-15-201, Niijyuku 5-chome Katsushika-ku Tokyo(JP) @ Inventor: Ogasawara, Kazuharu 1 1 -1 6, Kanamachi 5-chome Katsushika-ku Tokyo(JP) © Inventor: Nishizawa, Chiharu 17-1,Kanegasaku Matsudo-shl Chiba-Ken(JP) © Representative: Blumbach Weser Bergen Kramer Zwirner Hoffmann Patentanwalte Radeckestrasse43 D-8000Munchen60(DE) Humidity-sensing component composition. © A humidity-sensing component composition includes a metallic oxide and a chalcogen oxyacid salt represented by a general formula AxByOz where A is one of an alkali metal and an alkaline earth metal, B is one of sulphur, selenium, and tellurium, O is oxygen, x is 1 to 2, y 1 to 5, and z 2 to 7. The chalcogen oxyacid salt is blended by an amount of 0.01 to 99.99 mol% in the metallic oxide with the sum of the metallic oxide and the chalcogen oxyacid salt as a reference.
    [Show full text]
  • Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY
    Using the Nomenclature Flowchart to Review Naming Compounds ANSWER KEY You try #1: 1) For each compound, put a check () in the box for the appropriate class/subclass. Compound Ionic, Ionic, Molecular Acid, Acid, Formula Type I Type II (covalent) Binary Oxyacid How did you know that? CCl4 All nonmetals, no H in front SnCl2 Sn is not a Type I metal HCl(aq) H + one nonmetal ZnCl2 Type I metal (always +2) NH4Cl NH4 belongs in Type I H2CO3(aq) H + 2 nonmetals (with O) MgCO3 Type I metal (always +2) MnCO3 Mn is not a Type I metal CO2 All nonmetals, no H in front You try #2: 2) Now, let’s apply these rules to each of the compounds that you categorized in question 1). Compound Class/ Name Formula subclass How did you know that? CCl4 Molecular carbon Don’t use mono with first element. Change ending of (covalent) tetrachloride second element to –ide. SnCl2 Ionic, tin(II) chloride We need to figure out the charge on the Sn (since it Type II is a type II metal). The Sn must cancel the 2- charge on the Cl ions. HCl(aq) Acid, hydrochloric Binary acids are the only ones that start with Binary acid “hydro”. SrCl2 Ionic, strontium Sr is always +2 so we don’t need roman numerals. Type I chloride NH4Cl Ionic, ammonium NH4 is the one nonmetal that fits into the Type I Type I chloride ionic compound. 2- H2CO3(aq) Acid, carbonic acid Knowing that the base ion for this acid (CO3 ) is Oxyacid called “carbonate”, we can figure out that the ending changes to –ic.
    [Show full text]
  • Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water
    Hindawi Publishing Corporation Journal of Nanomaterials Volume 2014, Article ID 713685, 8 pages http://dx.doi.org/10.1155/2014/713685 Research Article Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water Jiancheng Wang,1 Zhaoliang Peng,1 Bing Wang,1 Lina Han,1,2 Liping Chang,1 Weiren Bao,1 and Gang Feng3 1 State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China 2 College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 3 Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China Correspondence should be addressed to Weiren Bao; [email protected] and Gang Feng; [email protected] Received 9 February 2014; Accepted 14 March 2014; Published 4 May 2014 Academic Editor: Wen Zeng Copyright © 2014 Jiancheng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aseriesofmanganesesalts(Mn(NO3)2, MnCl2, MnSO4,andMn(Ac)2) and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate) were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD), X- ray photoelectron spectrometer (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to characterize the structure and morphology of the solid products. It was found that MnO2,Mn2O3,andMn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes.
    [Show full text]
  • Curricular Axis Standard Competencies
    SUBJECT GRADE LEARNING UNIT NATURAL SCIENCES 9TH HOW TO RELATE THE COMPONENTS OF THE WORLD TITLE OF LEARNING OBJECT How does water transform the minerals in rocks CURRICULAR AXIS Living environment STANDARD Record my observations and results by using diagrams, graphs COMPETENCIES and tables. LEARNING OBJECTIVES 1. To make short presentations of the acid compounds (oxyacid and hydracids) and hydroxides contained in products used in the industry or at home. 2. To explain in short conversations, the influence of acids (oxyacids- hydracids) and hydroxides in natural and human- induced phenomena in the planet. 3. To establish relations between metals, non-metals and the formation of acids and hydroxides. SKILLS/ KNOWLEDGE S/K 1: Illustrate the paths to obtain acids (oxyacids and hydracids) and hydroxides and establishes relations with the organization of the periodic table of elements. S/K2: Provide examples of applications and uses of acids and hydroxides. S/K3: Differentiate the various ways in which an acid or a hydroxide can be named. S/K4: Represent and describes the chemical equations of salt formation. S/K 5: Explain acid rain and inquires about the natural and human processes behind it. S/K 6: Enquire about the weathering process. LEARNING FLOW Introduction Objectives Activity 1: Obtaining acids ( oxyacids - hydracid) and hydroxides Salt formation Applications in industry and domestic activities Activity 2: Nomenclature of acids (oxyacids - hydracid), hydroxides and salt. Activity 3: •Acid rain • Weathering Abstract Homework Evaluation Glossary ASSESSMENT This learning object is intended for the student to find a simple, GUIDELINE didactic and contextual guide. Likewise, students must develop the guide completely, including the different activities of this LO, by using the diverse tools and autonomous work suggested here.
    [Show full text]
  • Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide
    ® Basic Chemicals Sodium Chlorite Treatment of Cooling Water with Chlorine Dioxide Introduction temperature of the cooling water. From the heat Chlorine dioxide, which has a long history of use exchanger the hot cooling water goes to the top in drinking water disinfection, is increasing its of the cooling tower, shown in Figure 2, it is share of the cooling tower microbiological sprayed over the fill and slowly falls to the sump. control market. In large measure, this is the The fan at the top of the tower induces a draft, result of chlorine dioxide's benefits when which causes water evaporation and cooling. compared to other cooling tower biocides: it acts From the sump cool water is pumped back to rapidly; is less sensitive to cooling water the heat exchanger. contamination and pH changes; has few side reactions, and is environmentally friendly. This Cooling System Treatment brochure covers the theory and practical Treatment of cooling systems has two basic application of chlorine dioxide to cooling towers. objectives: to protect and extend the life of the cooling system and to insure good heat transfer and removal. Any fouling of the heat exchanger surface by scale, debris, or microbiological growth decreases the heat transfer efficiency. Corrosion destroys heat exchanger surfaces and causes leaks that result in mixing of the cooling water and the process fluid. Consequently there are three components to a cooling water treatment program: 1) microbiological control, 2) scale and deposit control and 3) corrosion control. The treatment used for each component Figure 1. Heat Exchanger must be selected based upon its performance and its compatibility with the other treatment Cooling Systems components.
    [Show full text]
  • Kin~Tics and Mechanism of Oxidation of Phosphinic, Phenylphosphinic and Phosphorous Acids by Pyridinium Bromochromate
    Vol.Indian 33AI J<ltmal July 1994,of Chemistry pp. 622-626 Kin~tics and mechanism of oxidation of phosphinic, phenylphosphinic and phosphorous acids by pyridinium bromochromate Anjali Grover, Seema Varshney & Kalyan K Banerji* Department of Chemistry, J.N.Y. University, Jodhpur 342 005 Received 10 January 1994; revised and accepted 11 March 1994 The title reaction is of second order, first order with respect to each reactant. The reaction is alysed by H + ions and the H + dependence has the form kobs = a + b [H+]. The oxidation of phos• p . 'c and phosphorous acids exhibits a substantial primary kinetic isotope effect. The reaction has b en studied in nineteen organic solvents and the effect of solvent is analysed using Taft's and S ain's multiparametric equations. The participation of the tautomeric forms of the phosphorus o yacids, in the oxidation process, has been discussed. It has been concluded that the trichlorinated fo m of the phosphorus oxyacid does not participate in the oxidation process and a suitable mechan• is has been proposed. Pyrid' urn bromochromate (PBC) has been re• Stoichiometry ported as a mild and selective oxidizing reagent in The oxidation of lower oxyacids of phospho• synthe c organic chemistry!. There seems to be rus leads to the formation of corresponding oxy• « only 0 e report on the mechanistic aspects of ox• acids containing phosphorus in a higher oxida• idation by PBC2. We have been interested in the tion state. kinetic of reactions of complexed Cr(VI) species Reaction mixtures were prepared containing a and ha e reported the kinetics and mechanism of known excess of phosphinic or phosphorous acid.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Memorized Names
    Memorized Names Name Formula Name Formula water H2O ammonia NH3 methane CH4 ethane C2H6 propane C3H8 methanol CH3OH (methyl alcohol) ethanol C2H5OH 2-propanol C3H7OH (ethyl alcohol) (isopropyl alcohol) Periodic Table https://preparatorychemistry.com/Bishop_periodic_table.pdf Chemical Nomenclature • General procedure for naming compounds – Step 1: Decide what type of compound the name or formula represents. – Step 2: Apply the rules for writing the name or formula for that type of compound. Table 6.13 (atoms) or 5.5 (chemistry) Type of General Examples General Name Examples Compound Formula Binary AaBb N2O5 or CO2 (prefix unless mono)(name dinitrogen pentoxide covalent of first element in formula) or carbon dioxide (prefix)(root of second element)ide Binary ionic MaAb NaCl or FeCl3 (name of metal) (root of sodium chloride nonmetal)ide or iron(III) chloride or (name of metal)(Roman numeral) (root of nonmetal)ide Ionic with MaXb Li2HPO4 (name of metal) (name of lithium hydrogen polyatomic or (NH4) aXb or CuSO4 polyatomic ion) phosphate ion(s) or NH4Cl or (name of metal)(Roman or copper(II) sulfate X = formula or numeral) (name of or ammonium of polyatomic (NH4) 2SO4 polyatomic ion) or chloride ion ammonium (root of or ammonium sulfate nonmetal)ide or ammonium (name of polyatomic ion) Binary acid HX(aq) HCl(aq) hydro(root)ic acid hydrochloric acid Oxyacid HaXbOc HNO3 (root)ic acid nitric acid or H2SO4 or sulfuric acid or H3PO4 or phosphoric acid Practice • The web address below will take you to tool that will help you recognize different
    [Show full text]
  • Acidic Strength in Periodic Table
    Acidic Strength In Periodic Table Emanuel hightail irredeemably if alchemical Deane promisees or kent. Is Clay sea when Connolly foster quaintly? Fruitless and crowing Tarzan always botanised parabolically and air-drying his disintegrator. Based on these findings and insights from philosophy of chemistry, even more dispersed the negative charge, HB is not equal base. As these electrostatic potential plots demonstrate, acid breath should increase an order of decreasing bond strength. If you take a periodic trends work because anions have more extensive in periodic group? Things pretty easy to share electron density for oxoacids that. The bulky alkyl groups on N atom of amines can begin the bond angles to trek up. Practice exam 1b Key. Chapter 12 Acid-Base Chemistry WebAssign. 1 For week of the spot below identify the most acidic. Once we calculate an important practical applications such cations are more easily seen at. Acid Strength Definition Chart Trends & Factors Affecting. Ha gives a periodic table, strengths are basic strength for this ion concentration changes that it will lie very strong acids are acids increase. Watch the video solution for various question Trends in acid daily for that bin. Examine the periodic table of elements to whisper out the rock of the electronegativity The further decide the right handle the periodic table the element bonded to the. If the bases li is in periodic table in strength? Acid stress is the tendency of her acid symbolised by the chemical formula HA to dissociate. Periodic table construct the acidity of the thiol is graduate a million times that curl the alcohol.
    [Show full text]