A Genomic Approach to the Role of Type IV Secretion Systems in Bartonella Host Adaptation

Total Page:16

File Type:pdf, Size:1020Kb

A Genomic Approach to the Role of Type IV Secretion Systems in Bartonella Host Adaptation A Genomic Approach to the Role of Type IV Secretion Systems in Bartonella Host Adaptation Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Philipp Engel aus Essen, Deutschland 0000 250 0 000 40 2 26 00 00 25 30 2 0 0 0 24 0 0 2 2 23 0 0 22 0 0 Basel, 2011 0 1 21 2 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch 20 0 0 0 0 0 19 0 2 Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz“ lizenziert. Die vollständige Lizenz18 kann unter creativecommons.org/licences/by-nc-nd/2.5/ch eingesehen werden. 1 9 17 0 0 0 0 16 0 Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz Sie dürfen: das Werk vervielfältigen, verbreiten und öffentlich zugänglich machen Zu den folgenden Bedingungen: Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt). Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden. Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. • Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Am Einfachsten ist es, einen Link auf diese Seite einzubinden. • Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten. • Diese Lizenz lässt die Urheberpersönlichkeitsrechte unberührt. Die gesetzlichen Schranken des Urheberrechts bleiben hiervon unberührt. Die Commons Deed ist eine Zusammenfassung des Lizenzvertrags in allgemeinverständlicher Sprache: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de Haftungsausschluss: Die Commons Deed ist kein Lizenzvertrag. Sie ist lediglich ein Referenztext, der den zugrundeliegenden Lizenzvertrag übersichtlich und in allgemeinverständlicher Sprache wiedergibt. Die Deed selbst entfaltet keine juristische Wirkung und erscheint im eigentlichen Lizenzvertrag nicht. Creative Commons ist keine Rechtsanwaltsgesellschaft und leistet keine Rechtsberatung. Die Weitergabe und Verlinkung des Commons Deeds führt zu keinem Mandatsverhältnis. Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Datum: 3.4.2009 Genemigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Christoph Dehio Prof. Urs Jenal Basel, den 08.12.2009 Prof. Dr. Eberhard Parlow (Dekan) for Fabienne Statement to my Thesis Statement to my Thesis This work was carried out in the group of Prof. Christoph Dehio in the Focal area Infection Biology at the Biozentrum of the University of Basel. My PhD thesis committee consisted of: Prof. Christoph Dehio Prof. Urs Jenal Prof. Guy Cornelis Prof. Walter Salzburger My thesis is written in a cumulative format. It consists of a synopsis covering several aspects related to my work. This is followed by result chapters presenting my research consisting of a published research article, a manuscript in preparation, a submitted manuscript, unpublished results, and a published review article. Finally, I recapitulate the major findings of my thesis and discuss some aspects and open questions of this work. i Table of Contents Table of Contents 1. Introduction 1 1.1 Studying bacterial evolution in the genomic era 2 1.2 Genome dynamics: Common strategies for adaptation in bacteria 4 1.2.1 Gene change 4 1.2.2 Gene gain 9 1.2.3 Gene loss 15 1.3 Alphaproteobacterial evolution 18 1.3.1 Genomic plasticity: Driving force of adaptability 18 1.3.2 Persistence: Common theme in infection strategies 21 1.4 Type IV secretion systems: Versatile nanomachines 23 1.4.1 Diversifying evolution of conjugation machineries 23 1.4.2 VirB and Trw T4SSs of Bartonella 25 1.5 References 29 2. Aim of the Thesis 37 3. Results 41 3.1 Research article I (published) 43 3.1.1 Summary 45 3.1.2 Manuscript: “Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors” 47 3.2 Research article II (in preparation) 55 3.2.1 Summary 57 3.2.2 Manuscript: “Parallel adaptive radiations in a bacterial pathogen” 59 3.2.3 Supporting Online Material 81 ii Table of Contents 3.3 Research article III (submitted) 127 3.3.1 Summary 129 3.3.2 Manuscript: “The Trw type IV secretion system of Bartonella mediates host-specific infection of erythrocytes” 131 3.4 Unpublished results 181 “The VirB-homologous T4SS of B. schoenbuchensis: An evolutionary link between conjugation machineries and T4SSs adopted for host interaction” 3.5 Review article (published) 193 3.5.1 Summary 195 3.5.2 Manuscript: “Genomics of host-restricted pathogens of the genus Bartonella” 197 4. Summary 209 5. Discussion 213 5.1 Genomic overview of Bartonella and its lifestyle 214 5.2 Adaptive radiations in Bartonella 217 5.2.1 The VirB system: a key innovation driving adaptive radiations 218 5.2.2 The Trw system: a lineage-specific key innovation 222 5.2.3 Ecological opportunities 224 5.2.4 The Vbh system in the ruminant-infecting species 226 5.3 References 228 6. Acknowledgments 233 7. Curriculum Vitae 237 iii Introduction 1. Introduction 1 Introduction – Studying bacterial evolution in the genomic era 1.1 Studying bacterial evolution in the genomic era How bacteria and their traits are shaped by evolution has always been an important question. Particularly, the understanding of the evolutionary mechanisms underlying the occurrence and emergence of bacterial pathogens is of general importance. Since evolution occurs through changes in heritable traits encoded on the DNA, a prerequisite for studying bacterial evolution is the access to DNA sequence information. For long time, DNA sequences were available for only a few genes or taxa, and systematic or representative data which would allow inference of evolutionary aspects was missing (Seifert and DiRita 2006). The appearance of the first complete genome sequence in 1995, the one of Haemophilus influenzae, has dramatically changed the possibilities to examine evolutionary patterns (Fleischmann et al. 1995). In this study, the complete sequence of the attenuated laboratory strain Rd was compared to the sequences of known virulence genes cloned from more pathogenic clinical isolates providing insights into the molecular evolution of this pathogen. In the following, new genome projects were initiated and the continuous improvement of existing as well as the establishment of new sequencing technologies (Schuster 2008) has resulted in more and more genomic sequences deposited in databases (Fig. 1) . At the time of writing, 1001 complete microbial genomes (archea and bacteria) were found to be stored in public databases (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). The availability of genomic sequence data did not only provide more than enough information to infer comprehensive phylogenic relationships among bacterial species, but was also the onset for a new way of studying bacterial evolution (Lawrence 2005). Comparative genomics - the comparison of different genome sequences across biological species or strains - is nowadays an important research field mainly aiming at the understanding of molecular mechanisms underlying evolution of biological organisms (Koonin and Wolf 2008). By these means, certain biological questions about evolution could be addressed the first time and unexpected genomic characteristics revealed. Bacterial chromosomes have been viewed for long time as collections of a defined set of genes (Lawrence and Hendrickson 2005). However, the unprecedented view into the genomes of bacteria discovered a high degree of 2 Introduction – Studying bacterial evolution in the genomic era plasticity reflected by the difference in size among sequenced bacterial genomes ranging from 180 kb in the intracellular symbiont Carsonella rudii to 13 Mb in the soil bacterium Sorangium cellulosum (Fig. 1). The high abundance and importance of horizontal gene transfer (HGT), i.e. the lateral acquisition of foreign DNA, might be the biggest conceptual novelty brought about by comparative genomics of prokaryotes (Lawrence 1999; Ochman et al. 2000). In the pre-genomic area, HGT was viewed as a marginal phenomenon responsible for specific evolutionary events such as the spread of resistances (Koonin and Wolf 2008). Nowadays it is clear that horizontal transfer of genes plays a central role in the evolution of bacteria, and together with the phenomenon of gene loss represents the major factors contributing to the observed differences in genome size among bacteria. This high degree of genomic plasticity found among bacteria seems to reflect their distinct lifestyles and their adaptation to a wide range of ecological niches (Pallen and Wren 2007). Archaea Bacteria Next-generation sequencing Figure 1: Exponential growth of microbial genome sequences in public databases since 1995 (green: genomes/ blue: genera). The onset of next-generation sequencing by the landmark publication of the sequencing-by-synthesis technology (Margulies et al. 2005) resulted in a boost of available genome sequences. Nowadays, genomes of most microbial genera are available. (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_growth.html). The inset shows the distribution of genome sizes among bacteria and archaea. Sequenced genomes of bacteria show a wide distribution with two peaks at 2 and 5 Mb, whereas archeal
Recommended publications
  • Abstract Pultorak, Elizabeth Lauren
    ABSTRACT PULTORAK, ELIZABETH LAUREN. The Epidemiology of Lyme Disease and Bartonellosis in Humans and Animals. (Under the direction of Edward B. Breitschwerdt). The expansion of vector borne diseases in humans, a variety of mammalian hosts, and arthropod vectors draws attention to the need for enhanced diagnostic techniques for documenting infection in hosts, effective vector control, and treatment of individuals with associated diseases. Through improved diagnosis of vector-borne disease in both humans and animals, epidemiological studies to elucidate clinical associations or spatio-temporal relationships can be assessed. Veterinarians, through the use of the C6 peptide in the SNAP DX test kit, may be able to evaluate the changing epidemiology of borreliosis through their canine population. We developed a survey to evaluate the practices and perceptions of veterinarians in North Carolina regarding borreliosis in dogs across different geographic regions of the state. We found that veterinarians’ perception of the risk of borreliosis in North Carolina was consistent with recent scientific reports pertaining to geographic expansion of borreliosis in the state. Veterinarians should promote routine screening of dogs for Borrelia burgdorferi exposure as a simple, inexpensive form of surveillance in this transitional geographic region. We next conducted two separate studies to evaluate Bartonella spp. bacteremia or presence of antibodies against B. henselae, B. koehlerae, or B. vinsonii subsp. berkhoffii in 296 patients examined by a rheumatologist and 192 patients with animal exposure (100%) and recent animal bites and scratches (88.0%). Among 296 patients examined by a rheumatologist, prevalence of antibodies (185 [62%]) and Bartonella spp. bacteremia (122 [41.1%]) was high.
    [Show full text]
  • Beating Chronic LYME
    Section 1 Beating Chronic LYME Dr. Kevin Conners Fellowship in Integrative Cancer Therapy Fellowship in Anti-Aging, Regenerative, and Functional Medicine American Academy of Anti-Aging Medicine www.ConnersClinic.com From left to right: Larvae, Nymph, Female, Male Tick Tick in Nymph stage is the size of a poppy seed. Beating Chronic LYME Forward I used to live in the woods. My wife and four children at the time purchased 280 acres in Wisconsin and basically lived off the land. We grew most of our own food, were ‘off grid’ as we produced our own electricity through solar panels, and had to pump our water by hand. It was certainly a different way of life that prepared us for missionary work in Mexico. It was 1997 and at the time I had begun hearing about Lyme disease being a tick- born disorder. I had never seen a deer tick before moving to our ‘little house in the big woods’ but one thing was for certain – we had plenty of deer. They were as populous as the mosquitoes. To make a long story short, both my oldest daughter and I had contracted Lyme during our three year stay. I experienced the violent sickness of acute Lyme as well as a beautiful bulls-eye rash that made the diagnosis easy. I took just 3 days of antibiotics and since that was just the second time that I had ever taken a prescription medication in my life, they eradicated the disease effectively. My daughter on the other hand wasn’t so fortunate. She never had an acute illness and we never saw any rash therefore we didn’t catch the disease until it had advanced to Chronic Lyme Disease (CLD).
    [Show full text]
  • Detection and Partial Molecular Characterization of Rickettsia and Bartonella from Southern African Bat Species
    Detection and partial molecular characterization of Rickettsia and Bartonella from southern African bat species by Tjale Mabotse Augustine (29685690) Submitted in partial fulfillment of the requirements for the degree MAGISTER SCIENTIAE (MICROBIOLOGY) in the Department of Microbiology and Plant Pathology Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria, South Africa Supervisor: Dr Wanda Markotter Co-supervisors: Prof Louis H. Nel Dr Jacqueline Weyer May, 2012 I declare that the thesis, which I hereby submit for the degree MSc (Microbiology) at the University of Pretoria, South Africa, is my own work and has not been submitted by me for a degree at another university ________________________________ Tjale Mabotse Augustine i Acknowledgements I would like send my sincere gratitude to the following people: Dr Wanda Markotter (University of Pretoria), Dr Jacqueline Weyer (National Institute for Communicable Diseases-National Health Laboratory Service) and Prof Louis H Nel (University of Pretoria) for their supervision and guidance during the project. Dr Jacqueline Weyer (Centre for Zoonotic and Emerging diseases (Previously Special Pathogens Unit), National Institute for Communicable Diseases (National Heath Laboratory Service), for providing the positive control DNA for Rickettsia and Dr Jenny Rossouw (Special Bacterial Pathogens Reference Unit, National Institute for Communicable Diseases-National Health Laboratory Service), for providing the positive control DNA for Bartonella. Dr Teresa Kearney (Ditsong Museum of Natural Science), Gauteng and Northern Region Bat Interest Group, Kwa-Zulu Natal Bat Interest Group, Prof Ara Monadjem (University of Swaziland), Werner Marias (University of Johannesburg), Dr Francois du Rand (University of Johannesburg) and Prof David Jacobs (University of Cape Town) for collection of blood samples.
    [Show full text]
  • Ru 2015 150 263 a (51) Мпк A61k 31/155 (2006.01)
    РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) (11) (13) RU 2015 150 263 A (51) МПК A61K 31/155 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2015150263, 01.05.2014 (71) Заявитель(и): НЕОКУЛИ ПТИ ЛТД (AU) Приоритет(ы): (30) Конвенционный приоритет: (72) Автор(ы): 01.05.2013 AU 2013901517 ПЕЙДЖ Стефен (AU), ГАРГ Санджай (AU) (43) Дата публикации заявки: 06.06.2017 Бюл. № 16 RU (85) Дата начала рассмотрения заявки PCT на национальной фазе: 01.12.2015 (86) Заявка PCT: AU 2014/000480 (01.05.2014) 2015150263 (87) Публикация заявки PCT: WO 2014/176634 (06.11.2014) Адрес для переписки: 190000, Санкт-Петербург, Box-1125, "ПАТЕНТИКА" A (54) СПОСОБЫ ЛЕЧЕНИЯ БАКТЕРИАЛЬНЫХ ИНФЕКЦИЙ (57) Формула изобретения 1. Способ лечения или профилактики бактериальной колонизации или инфекции у субъекта, включающий стадию: введения субъекту терапевтически эффективного количества робенидина или его терапевтически приемлемой соли, причем указанная A бактериальная колонизация или инфекция вызвана бактериальным агентом. 2. Способ по п. 1, отличающийся тем, что субъект выбран из группы, включающей: человека, животных, принадлежащих видам семейства псовых, кошачьих, крупного рогатого скота, овец, коз, свиней, птиц, рыб и лошадей. 3. Способ по п. 1, отличающийся тем, что робенидин вводят субъекту в дозе в диапазоне от 0,1 до 250 мг/кг массы тела. 4. Способ по любому из пп. 1-3, отличающийся тем, что бактериальный агент является 2015150263 грамположительным. 5. Способ по п. 4, отличающийся тем, что бактериальный агент выбран из
    [Show full text]
  • Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales
    Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales TECHNICAL BIOSAFETY COMMITTEE (TBC) NATIONAL CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (BIOTEC) NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA) MINISTRY OF SCIENCE AND TECHNOLOGY (MOST) 2015 Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales TECHNICAL BIOSAFETY COMMITTEE (TBC) NATIONAL CENTER FOR GENETIC ENGINEERING AND BIOTECHNOLOGY (BIOTEC) NATIONAL SCIENCE AND TECHNOLOGY DEVELOPMENT AGENCY (NSTDA) MINISTRY OF SCIENCE AND TECHNOLOGY (MOST) 2015 Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales Technical Biosafety Committee National Center for Genetic Engineering and Biotechnology National Science and Technology Development Agency (NSTDA) © National Center for Genetic Engineering and Biotechnology 2015 ISBN : 978-616-12-0386-3 Tel : +66(0)2-564-6700 Fax : +66(0)2-564-6703 E-mail : [email protected] URL : http://www.biotec.or.th Printing House : P.A. Living Printing Co.,Ltd 4 Soi Sirintron 7 Road Sirintron District Bangplad Province Bangkok 10700 Tel : +66(0)2-881 9890 Fax : +66(0)2-881 9894 Preface Genetically Modified Microorganisms (GMMs) were first used in B.E. 2525 to produce insulin in industrial medicine. Currently, GMMs are used in various industries, such as the food, pharmaceutical and bioplastic industries, to manufacture a number of important consumer products. To ensure operator and environmental safety, the Technical Biosafety Committee (TBC) of the National Center for Genetic Engineering and Biotechnology (BIOTEC), the National Science and Technology Development Agency (NSTDA), has prepared guidelines for GMM work, publishing “Biosafety Guidelines for Contained Use of Genetically Modified Microorganisms at Pilot and Industrial Scales” in B.E.
    [Show full text]
  • Hydropotes Inermis Argyropus)
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 54, No. 1: 87-91, February 2016 ▣ BRIEF COMMUNICATION http://dx.doi.org/10.3347/kjp.2016.54.1.87 Prevalence of Anaplasma and Bartonella spp. in Ticks Collected from Korean Water Deer (Hydropotes inermis argyropus) Jun-Gu Kang1, Sungjin Ko1, Heung-Chul Kim2, Sung-Tae Chong2, Terry A. Klein3, Jeong-Byoung Chae1, 1 4 5 6 7 1, Yong-Sun Jo , Kyoung-Seong Choi , Do-Hyeon Yu , Bae-Keun Park , Jinho Park , Joon-Seok Chae * 1Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; 25th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP96205-5247, USA; 3Public Health Command District-Korea, 65th Medical Brigade, Unit 15281, APO AP 96205-5281, USA; 4College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Korea; 5College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea; 6College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; 7College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea Abstract: Deer serve as reservoirs of tick-borne pathogens that impact on medical and veterinary health worldwide. In the Republic of Korea, the population of Korean water deer (KWD, Hydropotes inermis argyropus) has greatly increased from 1982 to 2011, in part, as a result of reforestation programs established following the Korean War when much of the land was barren of trees. Eighty seven Haemaphysalis flava, 228 Haemaphysalis longicornis, 8 Ixodes nipponensis, and 40 Ixodes persulcatus (21 larvae, 114 nymphs, and 228 adults) were collected from 27 out of 70 KWD.
    [Show full text]
  • Bartonella Talpae Comb
    INTERNATIONAL JOURNALOF SYSTEMATIC BACTERIOLOGY, Jan. 1995, p. 1-8 Vol. 45, No. 1 0020-7713/95/$04.00+0 Copyright 0 1995, International Union of Microbiological Societies Proposals To Unify the Genera Grahamella and Bartonella, with Descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and Three New Species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. RICHARD J. BIRTLES,’ * TIMOTHY G. HARRISON,2 NICHOLAS A. SAUNDERS,2 AND DAVID H. MOLYNEUX3 Respiratory and Systemic Infection Laboratory, and Laboratory of Microbiological Reagents, Central Public Health Laboratory, London Nw9 5HT and School of Tropical Medicine, Liverpool L3 SQA, United Kingdom Polyphasic methods were used to examine the taxonomic positions of three newly identified Grahamella species. A comparison of the 16s rRNA gene sequences of these organisms with the sequences available for other bacteria revealed that these three species form a tight monophyletic cluster with members of the genus Bartonella. This cluster is only remotely related to other members of the order Rickettsiales. Determinations of the levels of DNA relatedness between Grahamella species and Bartonella species (by using a modified hydroxyapatite method) revealed that all of the species belonging to these two genera are distinct but closely related. On the basis of these data and the results of guanine-plus-cytosine content and phenotypic characterization studies, we propose that the genera Grahumella and Bartonella should be unified and that the latter name should be retained. Bartonella talpae and Bartonella peromysci, new combinations for former Grahamella species, are created, and the following three new Bartonella species are described: Bartonella grahamii, Bartonella taylorii, and Bartonella doshiae.
    [Show full text]
  • Non-Contiguous Finished Genome Sequence and Description of Bartonella Saheliensis Sp. Nov. from the Blood of Gerbilliscus Gambia
    TAXONOGENOMICS: GENOME OF A NEW ORGANISM Non-contiguous finished genome sequence and description of Bartonella saheliensis sp. nov. from the blood of Gerbilliscus gambianus from Senegal H. Dahmana1,2, H. Medkour1,2, H. Anani2,3, L. Granjon4, G. Diatta5, F. Fenollar2,3 and O. Mediannikov1,2 1) Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France, 2) IHU-Méditerranée Infection, 3) Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 4) CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France and 5) Campus Commun UCAD-IRD of Hann, Dakar, Senegal Abstract Bartonella saheliensis strain 077 (= CSUR B644T; = DSM 28003T) is a new bacterial species isolated from blood of the rodent Gerbilliscus gambianus captured in the Sine-Saloum region of Senegal. In this work we describe the characteristics of this microorganism, as well as the complete sequence of the genome and its annotation. Its genome has 2 327 299 bp (G+C content 38.4%) and codes for 2015 proteins and 53 RNA genes. © 2020 The Authors. Published by Elsevier Ltd. Keywords: Bartonella, Bartonella saheliensissp. nov., genome, Gerbilliscus gambianus, rodents, senegal Original Submission: 16 December 2019; Accepted: 6 March 2020 Article published online: 14 March 2020 New species are always isolated and then characterized from Corresponding author: O. Mediannikov, MEPHI, IRD, APHM, IHU- rodents or their ectoparasites [4–8]. Interestingly, more than Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Mar- seille Cedex 05, France. half of the species characterized are harboured by rodents and E-mail: [email protected] lagomorphs; these include B. tribocorum, B. grahamii, B. elizabethae, B. vinsonii subsp.
    [Show full text]
  • Development of a System for Genetic Manipulation of Bartonella Bacilliformis
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1998 Development of a system for genetic manipulation of Bartonella bacilliformis James M. Battisti The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Battisti, James M., "Development of a system for genetic manipulation of Bartonella bacilliformis" (1998). Graduate Student Theses, Dissertations, & Professional Papers. 10534. https://scholarworks.umt.edu/etd/10534 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Bibliography
    Bibliography Aa, K. and R.A. Olsen. 1996. The use of various substrates and substrate caulis Poindexter by a polyphasic analysis. Int. J. Syst. Evol. Microbiol. concentrations by a Hyphomicrobium sp. isolated from soil: effect on 51: 27–34. growth rate and growth yield. Microb. Ecol. 31: 67–76. Abram, D., J. Castro e Melo and D. Chou. 1974. Penetration of Bdellovibrio Aalen, R.B. and W.B. Gundersen. 1985. Polypeptides encoded by cryptic bacteriovorus into host cells. J. Bacteriol. 118: 663–680. plasmids from Neisseria gonorrhoeae. Plasmid 14: 209–216. Abramochkina, F.N., L.V. Bezrukova, A.V. Koshelev, V.F. Gal’chenko and Aamand, J., T. Ahl and E. Spieck. 1996. Monoclonal antibodies recog- M.V. Ivanov. 1987. Microbial methane oxidation in a fresh-water res- nizing nitrite oxidoreductase of Nitrobacter hamburgensis, N. winograd- ervoir. Mikrobiologiya 56: 464–471. skyi, and N. vulgaris. Appl. Environ. Microbiol. 62: 2352–2355. Achenbach, L.A., U. Michaelidou, R.A. Bruce, J. Fryman and J.D. Coates. Aarestrup, F.M., E.M. Nielsen, M. Madsen and J. Engberg. 1997. Anti- 2001. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum microbial susceptibility patterns of thermophilic Campylobacter spp. gen. nov., sp. nov., two novel environmentally dominant from humans, pigs, cattle, and broilers in Denmark. Antimicrob. (per)chlorate-reducing bacteria and their phylogenetic position. Int. Agents Chemother. 41: 2244–2250. J. Syst. Evol. Microbiol. 51: 527–533. Abadie, M. 1967. Formations intracytoplasmique du type “me´some” chez Achouak, W., R. Christen, M. Barakat, M.H. Martel and T. Heulin. 1999. Chondromyces crocatus Berkeley et Curtis.
    [Show full text]
  • EID Vol15no4 Cover Copy
    Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 519–688 EDITOR-IN-CHIEF D. Peter Drotman Managing Senior Editor EDITORIAL BOARD Polyxeni Potter, Atlanta, Georgia, USA Dennis Alexander, Addlestone Surrey, United Kingdom Senior Associate Editor Barry J. Beaty, Ft. Collins, Colorado, USA Brian W.J. Mahy, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA Christopher Braden, Atlanta, GA, USA Associate Editors Carolyn Bridges, Atlanta, GA, USA Paul Arguin, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Charles Ben Beard, Ft. Collins, Colorado, USA Kenneth C. Castro, Atlanta, Georgia, USA David Bell, Atlanta, Georgia, USA Thomas Cleary, Houston, Texas, USA Charles H. Calisher, Ft. Collins, Colorado, USA Anne DeGroot, Providence, Rhode Island, USA Michel Drancourt, Marseille, France Vincent Deubel, Shanghai, China Paul V. Effl er, Perth, Australia Ed Eitzen, Washington, DC, USA K. Mills McNeill, Kampala, Uganda David Freedman, Birmingham, AL, USA Nina Marano, Atlanta, Georgia, USA Kathleen Gensheimer, Augusta, ME, USA Martin I. Meltzer, Atlanta, Georgia, USA Peter Gerner-Smidt, Atlanta, GA, USA David Morens, Bethesda, Maryland, USA Duane J. Gubler, Singapore J. Glenn Morris, Gainesville, Florida, USA Richard L. Guerrant, Charlottesville, Virginia, USA Patrice Nordmann, Paris, France Scott Halstead, Arlington, Virginia, USA Tanja Popovic, Atlanta, Georgia, USA David L. Heymann, Geneva, Switzerland Jocelyn A. Rankin, Atlanta, Georgia, USA Daniel B. Jernigan, Atlanta, Georgia, USA Didier Raoult, Marseille, France Charles King, Cleveland, Ohio, USA Pierre Rollin, Atlanta, Georgia, USA Keith Klugman, Atlanta, Georgia, USA Dixie E. Snider, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Frank Sorvillo, Los Angeles, California, USA S.K. Lam, Kuala Lumpur, Malaysia David Walker, Galveston, Texas, USA Bruce R.
    [Show full text]
  • In Search of a Bacterial Spedes Definition
    Rev. Biol. Trop.,45(2): 753-771,1997 SPECIAL PAPER In search of a bacterial spedes definition EdgardoMoreno Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria,Universidad Nacional, Heredia,Costa Rica. Fax: (506) 2381298,E-mail: [email protected] (Received14-IV-1996. Corrected 9-X-1996. Accepted30-X-1996.) Abstraet: The bacterial species concept was ¡;¡xamined within the framework of plant and animal associated a-2 proteobacteria,taking into consideration the phylogenetic, taxonomic and biological approaches as well as the microbiologists' perception. The virtue of the phylogenetic approach is that it gi.ves an evolutionary perspective of the bacterial lineage; however the methods used possess low resolution for defining species located at the terminal branches of lhe phylogenetic trees. The merit of the taxonomic approach.is that species are defined on the basis of multiple characteristicS allowing high resolution at the terminal branches of dendograms; its disadvantage is the inaccuracy in the earliet nodes. Onan individual level, the qualitative biological characteristics used for the definition of species frequently reveal shortcomings because many of these properties are the result of coevolution, parallel evolution or the horizontal transfer of genes. Nevertheless, when considered together with the phylogenetic and taxonomic approaches,important uncertainties are discovered: these must be weighed if a practical definition of bacterial species is conceived. The microbiologi.sts' perception is thecriterion expressed by a group of sponsors who, basedon scientific and practical grounds, propose a new bacterial species. The success of this new .proposal is measured by its widespread acceptance and itspermanence. A difficult pr(jblem con cerned with definingbacterial species is how to distinguishif tbey are independent evolutionary units or if they are reticulateevolutionary units.
    [Show full text]