Development of a System for Genetic Manipulation of Bartonella Bacilliformis

Total Page:16

File Type:pdf, Size:1020Kb

Development of a System for Genetic Manipulation of Bartonella Bacilliformis University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1998 Development of a system for genetic manipulation of Bartonella bacilliformis James M. Battisti The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Battisti, James M., "Development of a system for genetic manipulation of Bartonella bacilliformis" (1998). Graduate Student Theses, Dissertations, & Professional Papers. 10534. https://scholarworks.umt.edu/etd/10534 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Development of a system for genetic manipulation of Bartonella bacilliformis. By James M. Battisti B.A. Carroll College, Helena, Montana 1991 Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy The University of Montana 1998 Vc-LaiC ^•"vl c -- —Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of1 V I O N T A N A Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. * * Please check "Yes" or "No" and provide signature ** Y es, I grant permission x T No, I do not grant permission Author's Signature D a te ____________ Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9840731 UMI Microform 9840731 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGMENTS I am grateful to Michael F. Minnick for his unparalleled mentorship on both professional and personal levels, for the tools of molecular biology, and the mastery of nymphing. The guidance and instruction of professors Scott Samuels, George Card, Bill Granath, Ralph Judd, Scott Manning, Keith Parker, Bill Holben, Barb Wright, Dan Deborde and Jim Gannon was integral to the completion of this study, as was the assistance and furnishings from; Dr. Sam Mitchell, Helen Grasseschi, David Scherer, Paul Dexter, Sherry Coleman, Steve McAllister, Joan Strange, Pat Ball, Dr. Tim Gsell, Jim Driver, Dr. Dennis Reshke, Dr. M.E. Kovach, Dr. Jean Pfau, Dr. Angelica Longacre and Deborah Kane. I was especially lucky to be assisted by Laura Smitherman in the gyrB section of this dissertation (Chapter four), her laboratory and intellectual skills are superb. Over the years I have found many friends throughout the division with whom I have shared science, laughter, anticipation, confusion, and frustration, all of which has had an impact on this study in many ways that I am aware of as well as many that I am not To my good friends Scott, Brian, Pete, Shane, Warren, Craig, Dave, Mike, Eric, Larry, Jen, Abbie, and Sheila for all of the smiles and laughs. To my Mom and Dad, grandparents, and family for their love and support over the years. To the New York Yankees, Grandpa’s J.D. Lamp, and the rivers and lakes and the beautiful fish in them. Finally, I dedicate this work to Tracy, Julia, and John, for without their love, understanding, time, and confidence, none of this would have been possible. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS Chapter Page 1 Introduction to the Bartonella and Genetic Manipulation 1 I. The Bartonella 1 A. Introduction 1 B. Phylogeny 2 C. History and Epidemiology 5 1. B. bacillifoTtms 5 2. B. quinlana 8 3. B. henselae 10 4. Other Bartonella 11 D. Physical Characteristics 12 E. Pathogenesis 13 1. Carri6n’s disease: Oroya Fever and Verruga peruana 14 2. Trench Fever 15 3. Cat Scratch Disease (CSD) 16 4. Endocarditis 17 5. Bacillary Angiomatosis (BA) 17 F. Virulence Determinants 18 1. Adhesion to Host Cell 20 2. Invasion of Host Cell 22 3. Angiogenic Factor 25 4. Immune Evasion Factors and Strategies 26 5. Stress Response Factors 27 6. Hemin Binding Factor 27 G. Diagnosis, Treatment and Prevention 28 1. Diagnosis 28 2. Treatment 28 3. Prevention 29 II. Genetic Manipulation 30 A. Introduction and Background 30 1. Plasmid Transformation 33 2. Random Mutagenesis 34 3. Site-Specific Mutagenesis:Insertional Recombination 35 4. Site-Specific Mutagenesis:Replacement Recombination 36 5. Natural Mutations 36 B . Homologous Recombination 37 III. Research Significance and Goals 38 2. Optimization of the Conditions for Homologous Recombination 42 I. Introduction 42 II. Materials and Methods 42 III. Results 59 IV. Discussion 59 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3. Site-Directed Mutagenesis and Transcomplementation of the 62 Bartonella baciltiformis Fiagellin Gene I. Abstract 62 II. Introduction 63 III. Materials and Methods 65 IV. Results 71 V. Discussion 90 VI. Acknowledgments 98 VII. References 98 4 . Mutations in Bartonella bacilliformis gyrB confer resistance 104 to coumermycin Aj I. Abstract 104 II. Introduction 105 III. Materials and Methods 107 IV. Results 113 V. Discussion 126 VI. Acknowledgments 129 VII. References 130 5. General Discussion 137 References for Chapters One, Two, and Five 143 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. LIST OF TABLES Chapter Table Description Page 1 1 Significant Historical Moments 6 2 The Bartonella genus 9 3 1 Bacterial strains and plasmids 66 4 1 Bacterial strains and plasmids 108 2 Genotypic analysis of natural mutants 124 3 Complementation with B. bacilliformis gyrB 125 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. l i s t o f f i g u r e s Chapter Figure Description Page I 1 Phylogeny of the Bartonella 3 2 Strategies of genetic manipulation 31 2 1 Obstacles impeding homologous recombination 43 2 Flagellin O-type gene targeting constructs 51 3 Flagellin Q-Type gene targeting construct 53 4 GyrB Q-Type gene targeting construct 55 3 1 Diagram of site-directed flagellin disruption 73 2 PCR analysis of flagellin mutants 77 3 SDS-PAGE and immunoblot analysis of mutants 79 4 PCR analysis of transcomplements 83 5 SDS-PAGE, immunoblot of transcomplements 85 6 Phenotypic analysis by electron microscopy 87 7 Phenotypic analysis of motility 91 8 Human erythrocyte adhesion analysis 93 4 1 gyrB nucleotide and predicted amino acid sequence 115 2 GyrB multiple alignment 117 3 gyrB DNA hybridization 120 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CHAPTER ONE Introduction to the Bartonella and Genetic Manipulation I. THE BARTONELLA A. INTRODUCTION The bartonellae are a unique group of gram negative intracellular bacteria that employ arthropod-mediated transmission and hemotrophy as common parasitic strategies. Phylogenetically, recent taxonomic re-classifications have expanded the number of Bartonella species from one, B. bacilliformis, to 11 species,
Recommended publications
  • Burkholderia Cepacia Complex As Human Pathogens1
    Journal of Nematology 35(2):212–217. 2003. © The Society of Nematologists 2003. Burkholderia cepacia Complex as Human Pathogens1 John J. LiPuma2 Abstract: Although sporadic human infection due to Burkholderia cepacia has been reported for many years, it has been only during the past few decades that species within the B. cepacia complex have emerged as significant opportunistic human pathogens. Individuals with cystic fibrosis, the most common inherited genetic disease in Caucasian populations, or chronic granulomatous disease, a primary immunodeficiency, are particularly at risk of life-threatening infection. Despite advances in our understanding of the taxonomy, microbiology, and epidemiology of B. cepacia complex, much remains unknown regarding specific human virulence factors. The broad-spectrum antimicrobial resistance demonstrated by most strains limits current therapy of infection. Recent research efforts are aimed at a better appreciation of the pathogenesis of human infection and the development of novel therapeutic and prophylactic strategies. Key words: Burkholderia cepacia, cystic fibrosis, human infection. Until relatively recently, Burkholderia cepacia had been B. cepacia, possess other factors that remain to be elu- considered a phytopathogenic or saprophytic bacterial cidated that also mediate pathogenicity in this condi- species with little potential for human infection. How- tion (Speert et al., 1994). Fortunately, CGD is a rela- ever, reports of sporadic human infection have ap- tively rare disease, having an average annual incidence peared in the biomedical literature, generally describ- of approximately 1/200,000 live births in the United ing infection in persons with some underlying disease States; this means there are approximately 20 persons or debilitation (Dailey and Benner, 1968; Poe et al., with CGD born each year in the United States.
    [Show full text]
  • Genetic Diversity of Bartonella Species in Small Mammals in the Qaidam
    www.nature.com/scientificreports OPEN Genetic diversity of Bartonella species in small mammals in the Qaidam Basin, western China Huaxiang Rao1, Shoujiang Li3, Liang Lu4, Rong Wang3, Xiuping Song4, Kai Sun5, Yan Shi3, Dongmei Li4* & Juan Yu2* Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientifc basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge’ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplifcation and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in diferent tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical diference, but that in diferent habitats had statistical diference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identifed (two diferent Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specifc characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China.
    [Show full text]
  • Novel Small Rnas Expressed by Bartonella Bacilliformis Under Multiple Conditions 2 Reveal Potential Mechanisms for Persistence in the Sand Fly Vector and Human 3 Host
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.235903; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Novel small RNAs expressed by Bartonella bacilliformis under multiple conditions 2 reveal potential mechanisms for persistence in the sand fly vector and human 3 host 4 5 6 Shaun Wachter1, Linda D. Hicks1, Rahul Raghavan2 and Michael F. Minnick1* 7 8 9 10 1 Program in Cellular, Molecular & Microbial Biology, Division of Biological Sciences, 11 University of Montana, Missoula, Montana, United States of America 12 2 Department of Biology and Center for Life in Extreme Environments, Portland State 13 University, Portland, Oregon, United States of America 14 15 16 17 * Corresponding author 18 E-mail: [email protected] (MFM) 19 20 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.235903; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 Bartonella bacilliformis, the etiological agent of Carrión’s disease, is a Gram-negative, 23 facultative intracellular alphaproteobacterium. Carrión’s disease is an emerging but neglected 24 tropical illness endemic to Peru, Colombia, and Ecuador. B. bacilliformis is spread between 25 humans through the bite of female phlebotomine sand flies.
    [Show full text]
  • 09 Piqueras.Qxp
    PERSPECTIVES INTERNATIONAL MICROBIOLOGY (2007) 10:217-226 DOI: 10.2436/20.1501.01.30 ISSN: 1139-6709 www.im.microbios.org Microbiology: a dangerous profession? Mercè Piqueras President, Catalan Association for Science Communication (ACCC), Barcelona, Spain The history of science contains many cases of researchers eases in Minorca from the year 1744 to 1749 to which is pre- who have died because of their professional activity. In the fixed, a short account of the climate, productions, inhabi- field of microbiology, some have died or have come close to tants, and endemical distempers of that island (T. Cadell, D. death from infection by agents that were the subject of their Wilson and G. Nicol, London, 1751), which he dedicated to research (Table 1). Infections that had a lethal outcome were the Society of Surgeons of His Majesty’s Royal Navy. usually accidental. Sometimes, however, researchers inocu- Minorcan historian of science Josep M. Vidal Hernández has lated themselves with the pathogen or did not take preventive described and carefully analyzed Cleghorn’s work in measures against the potential pathogen because they wanted Minorca and his report [43]. According to Vidal, what to prove their hypotheses—or disprove someone else’s— Cleghorn describes is “tertian” fever, which was the name regarding the origin of the infection. Here is an overview of given at the time to fever caused by malaria parasites with a several episodes in the history of microbiology since the mid periodicity of 48 hours. In fact, Cleghorn used quinine to nineteenth century involving researchers or workers in fields treat tertian fever (i.e, malaria), which was not eradicated related to microbiology who have become infected.
    [Show full text]
  • Abstract Pultorak, Elizabeth Lauren
    ABSTRACT PULTORAK, ELIZABETH LAUREN. The Epidemiology of Lyme Disease and Bartonellosis in Humans and Animals. (Under the direction of Edward B. Breitschwerdt). The expansion of vector borne diseases in humans, a variety of mammalian hosts, and arthropod vectors draws attention to the need for enhanced diagnostic techniques for documenting infection in hosts, effective vector control, and treatment of individuals with associated diseases. Through improved diagnosis of vector-borne disease in both humans and animals, epidemiological studies to elucidate clinical associations or spatio-temporal relationships can be assessed. Veterinarians, through the use of the C6 peptide in the SNAP DX test kit, may be able to evaluate the changing epidemiology of borreliosis through their canine population. We developed a survey to evaluate the practices and perceptions of veterinarians in North Carolina regarding borreliosis in dogs across different geographic regions of the state. We found that veterinarians’ perception of the risk of borreliosis in North Carolina was consistent with recent scientific reports pertaining to geographic expansion of borreliosis in the state. Veterinarians should promote routine screening of dogs for Borrelia burgdorferi exposure as a simple, inexpensive form of surveillance in this transitional geographic region. We next conducted two separate studies to evaluate Bartonella spp. bacteremia or presence of antibodies against B. henselae, B. koehlerae, or B. vinsonii subsp. berkhoffii in 296 patients examined by a rheumatologist and 192 patients with animal exposure (100%) and recent animal bites and scratches (88.0%). Among 296 patients examined by a rheumatologist, prevalence of antibodies (185 [62%]) and Bartonella spp. bacteremia (122 [41.1%]) was high.
    [Show full text]
  • Bartonella Henselae Detected in Malignant Melanoma, a Preliminary Study
    pathogens Article Bartonella henselae Detected in Malignant Melanoma, a Preliminary Study Marna E. Ericson 1, Edward B. Breitschwerdt 2 , Paul Reicherter 3, Cole Maxwell 4, Ricardo G. Maggi 2, Richard G. Melvin 5 , Azar H. Maluki 4,6 , Julie M. Bradley 2, Jennifer C. Miller 7, Glenn E. Simmons, Jr. 5 , Jamie Dencklau 4, Keaton Joppru 5, Jack Peterson 4, Will Bae 4, Janet Scanlon 4 and Lynne T. Bemis 5,* 1 T Lab Inc., 910 Clopper Road, Suite 220S, Gaithersburg, MD 20878, USA; [email protected] 2 Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; [email protected] (E.B.B.); [email protected] (R.G.M.); [email protected] (J.M.B.) 3 Dermatology Clinic, Truman Medical Center, University of Missouri, Kansas City, MO 64108, USA; [email protected] 4 Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] (C.M.); [email protected] (A.H.M.); [email protected] (J.D.); [email protected] (J.P.); [email protected] (W.B.); [email protected] (J.S.) 5 Department of Biomedical Sciences, Duluth Campus, Medical School, University of Minnesota, Duluth, MN 55812, USA; [email protected] (R.G.M.); [email protected] (G.E.S.J.); [email protected] (K.J.) 6 Department of Dermatology, College of Medicine, University of Kufa, Kufa 54003, Iraq 7 Galaxy Diagnostics Inc., Research Triangle Park, NC 27709, USA; [email protected] Citation: Ericson, M.E.; * Correspondence: [email protected]; Tel.: +1-720-560-0278; Fax: +1-218-726-7906 Breitschwerdt, E.B.; Reicherter, P.; Maxwell, C.; Maggi, R.G.; Melvin, Abstract: Bartonella bacilliformis (B.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Bacteria Clostridia Bacilli Eukaryota CFB Group
    AM935842.1.1361 uncultured Burkholderiales bacterium Class Betaproteobacteria AY283260.1.1552 Alcaligenes sp. PCNB−2 Class Betaproteobacteria AM934953.1.1374 uncultured Burkholderiales bacterium Class Betaproteobacteria AJ581593.1.1460 uncultured betaAM936569.1.1351 proteobacterium uncultured Class Betaproteobacteria Derxia sp. Class Betaproteobacteria AJ581621.1.1418 uncultured beta proteobacterium Class Betaproteobacteria DQ248272.1.1498 uncultured soil bacterium soil uncultured DQ248272.1.1498 DQ248235.1.1498 uncultured soil bacterium RS49 DQ248270.1.1496 uncultured soil bacterium DQ256489.1.1211 Variovorax paradoxus Class Betaproteobacteria Class paradoxus Variovorax DQ256489.1.1211 AF523053.1.1486 uncultured Comamonadaceae bacterium Class Betaproteobacteria AY706442.1.1396 uncultured bacterium uncultured AY706442.1.1396 AJ536763.1.1422 uncultured bacterium CS000359.1.1530 Variovorax paradoxus Class Betaproteobacteria Class paradoxus Variovorax CS000359.1.1530 AY168733.1.1411 uncultured bacterium AJ009470.1.1526 uncultured bacterium SJA−62 Class Betaproteobacteria Class SJA−62 bacterium uncultured AJ009470.1.1526 AY212561.1.1433 uncultured bacterium D16212.1.1457 Rhodoferax fermentans Class Betaproteobacteria Class fermentans Rhodoferax D16212.1.1457 AY957894.1.1546 uncultured bacterium AJ581620.1.1452 uncultured beta proteobacterium Class Betaproteobacteria RS76 AY625146.1.1498 uncultured bacterium RS65 DQ316832.1.1269 uncultured beta proteobacterium Class Betaproteobacteria DQ404909.1.1513 uncultured bacterium uncultured DQ404909.1.1513 AB021341.1.1466 bacterium rM6 AJ487020.1.1500 uncultured bacterium uncultured AJ487020.1.1500 RS7 RS86RC AF364862.1.1425 bacterium BA128 Class Betaproteobacteria AY957931.1.1529 uncultured bacterium uncultured AY957931.1.1529 CP000884.723807.725332 Delftia acidovorans SPH−1 Class Betaproteobacteria AY957923.1.1520 uncultured bacterium uncultured AY957923.1.1520 RS18 AY957918.1.1527 uncultured bacterium uncultured AY957918.1.1527 AY945883.1.1500 uncultured bacterium AF526940.1.1489 uncultured Ralstonia sp.
    [Show full text]
  • Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
    microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2].
    [Show full text]
  • Emerging Bartonellosis Christoph Dehio & Anna Sander
    Emerging bartonellosis Christoph Dehio & Anna Sander Bartonellae are arthropod-borne pathogens of they cause a long-lasting infection within the red blood Ggrowing medical importance. Until the early cells (intraerythrocytic bacteraemia). Blood-sucking 1990s, only two species of this bacterial genus, arthropod vectors transmit the bacteria from this reservoir B. bacilliformis and B. quintana, were recognized as caus- to new hosts. Incidental infection of non-reservoir hosts ing disease in humans. In addition to re-emergence of the (e.g. humans by the zoonotic species) may cause disease, human-specific B. quintana, a number of zoonotic but does not result in intraerythrocytic infection. Bartonella species have now been recognized as causative agents for a broadening spectrum of diseases that can be Natural history and epidemiology transmitted to humans from their animal hosts. Most Humans are the only known reservoir for two Bartonella prominently, B. henselae is an important zoonotic species, B. bacilliformis and B. quintana. pathogen that is frequently passed from its feline B. quintana was a leading cause of infectious morbidity reservoir to humans. among soldiers during World War I, and recurred on the Bacteria of the genus Bartonella are Gram-negative, East European front in World War II. The disease, pleomorphic, fastidious bacilli that belong to the α-2 Trench fever, is rarely fatal and is characterized by an subclass of Proteobacteria. All Bartonella species appear intraerythrocytic bacteraemia with recurrent, cycling to have a specific mammalian species as a host, in which fever. It is transmitted among humans by the human body louse Pediculus humanus. Although almost forgotten Table 1.
    [Show full text]
  • Bartonella: Feline Diseases and Emerging Zoonosis
    BARTONELLA: FELINE DISEASES AND EMERGING ZOONOSIS WILLIAM D. HARDY, JR., V.M.D. Director National Veterinary Laboratory, Inc. P.O Box 239 Franklin Lakes, New Jersey 07417 201-891-2992 www.natvetlab.com or .net Gingivitis Proliferative Gingivitis Conjunctivitis/Blepharitis Uveitis & Conjunctivitis URI Oral Ulcers Stomatitis Lymphadenopathy TABLE OF CONTENTS Page SUMMARY……………………………………………………………………………………... i INTRODUCTION……………………………………………………………………………… 1 MICROBIOLOGY……………………………………………………………………………... 1 METHODS OF DETECTION OF BARTONELLA INFECTION.………………………….. 1 Isolation from Blood…………………………………………………………………….. 2 Serologic Tests…………………………………………………………………………… 2 SEROLOGY……………………………………………………………………………………… 3 CATS: PREVALENCE OF BARTONELLA INFECTIONS…………………………………… 4 Geographic Risk factors for Infection……………………………………………………. 5 Risk Factors for Infection………………………………………………………………… 5 FELINE BARTONELLA DISEASES………………………………………………………….… 6 Bartonella Pathogenesis………………………………………………………………… 7 Therapy of Feline Bartonella Diseases…………………………………………………… 14 Clinical Therapy Results…………………………………………………………………. 15 DOGS: PREVALENCE OF BARTONELLA INFECTIONS…………………………………. 17 CANINE BARTONELLA DISEASES…………………………………………………………... 17 HUMAN BARTONELLA DISEASES…………………………………………………………… 18 Zoonotic Case Study……………………………………………………………………... 21 FELINE BLOOD DONORS……………………………………………………………………. 21 REFERENCES………………………………………………………………………………….. 22 This work was initiated while Dr. Hardy was: Professor of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York and Director,
    [Show full text]
  • Afipia Clevelandensis Sp
    JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1991, p. 2450-2460 Vol. 29, No. 11 0095-1137/91/112450-11$02.00/0 Copyright © 1991, American Society for Microbiology Proposal of Afipia gen. nov., with Afipia felis sp. nov. (Formerly the Cat Scratch Disease Bacillus), Afipia clevelandensis sp. nov. (Formerly the Cleveland Clinic Foundation Strain), Afipia broomeae sp. nov., and Three Unnamed Genospecies DON J. BRENNER,'* DANNIE G. HOLLIS,' C. WAYNE MOSS,' CHARLES K. ENGLISH,2 GERALDINE S. HALL,3 JUDY VINCENT,4 JON RADOSEVIC,5 KRISTIN A. BIRKNESS,1 WILLIAM F. BIBB,' FREDERICK D. QUINN,' B. SWAMINATHAN,1 ROBERT E. WEAVER,' MICHAEL W. REEVES,' STEVEN P. O'CONNOR,6 PEGGY S. HAYES,' FRED C. TENOVER,7 ARNOLD G. STEIGERWALT,' BRADLEY A. PERKINS,' MARYAM I. DANESHVAR,l BERTHA C. HILL,7 JOHN A. WASHINGTON,3 TONI C. WOODS,' SUSAN B. HUNTER,' TED L. HADFIELD,2 GLORIA W. AJELLO,1 ARNOLD F. KAUFMANN,8 DOUGLAS J. WEAR,2 AND JAY D. WENGER' Meningitis and Special Pathogens Branch,' Respiratory Diseases Branch,6 and Bacterial Zoonoses Activity,8 Division of Bacterial and Mycotic Diseases, and Hospital Infections Program,7 Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333; Department ofInfectious and Parasitic Diseases Pathology, Armed Forces Institute ofPathology, Washington, DC 20306-60002; Department of Microbiology, Cleveland Clinic Foundation, Cleveland, Ohio 441953; Department ofPediatrics, Tripler Army Medical Center, Tripler AMC, Hawaii 968594; and Indiana State Board of Health, Disease Control Laboratory Division, Indianapolis, Indiana 46206-19645 Received 3 June 1991/Accepted 5 August 1991 On the basis of phenotypic characterization and DNA relatedness determinations, the genus Afipia gen.
    [Show full text]