Musk in Space Elon Musk Zuid-Afrikaan – Canadees – Amerikaan

Total Page:16

File Type:pdf, Size:1020Kb

Musk in Space Elon Musk Zuid-Afrikaan – Canadees – Amerikaan Musk In Space Elon Musk https://www.youtube.com/watch?v=-VcCzKjXs-8 Zuid-Afrikaan – Canadees – Amerikaan • Geboren op 28.06.1971 in Zuid-Afrika • Vertrok op 17 jarige leeftijd naar Canada • Twee jaar later naar Pennsylvania • 1999 – Zip2 (met zijn broer) • Verkocht voor 340 miljoen dollar aan Compaq • 2002 – Paypal • Verkocht voor 1,5 miljard dollar aan eBay Een Bezige Bij • 2002 – SpaceX • 2004 – Tesla (opgericht in 2003) • 2006 – Solar City • 2015 – OpenAI • 2016 – Neurolink • 2016 – The Boring Company • Hyperloop SpaceX Een Overzicht • 2001 – “Mars Oasis” concept – Lanceren kost te veel geld • Idee om een eigen raket te ontwikkelen – Verticale Integratie • 85% Falcon/Dragon wordt in-house gefabriceerd • Modulaire benadering: Falcon – Falcon 9 – Falcon Heavy • 2002 – Oprichting SpaceX • 11.2006 – Eerste lancering Falcon (naar de Millennium Falcon) • 06.2010 – Falcon 9 (Dragon en Crew Dragon) • 2012 – 57 miljoen dollar per lancering – Arianespace 137 miljoen dollar • 01.2015 – Starlink -> 04.2019 Eerste batch 60 Falcon Falcon 1 • Tweetrapsraket – 1ste trap Merlin – 2de trap Kestrel • Merlin 1A (2 lanceringen) – Merlin 1C (3 lanceringen) • Ervaring opdoen • Origineel voorzien voor Vandenberg Air Force Base LC3W • Conflict met andere lanceerplatformen • Kwajalein Atoll – Omelek Island Falcon 1 • 24.03.2006 – Lekkende brandstofleiding • Schroef gecorrodeerd door zoutwater • Alumium vervangen door roestvrij staal (goedkoper, maar zwaarder) • Inbouwen van veel meer pre-launch controles • 21.03.2007 – 1ste trap met interstage botste tegen 2de trap • Tollende beweging • 03.08.2008 – Na afscheiden vloog 1ste trap tegen 2de trap • Teveel aan brandstof • Vier satellieten gingen verloren • https://www.youtube.com/watch?v=v0w9p3U8860 Bijna failliet • Musk – 2017 – International Astronautical Congress: • “And the reason that I ended up being the chief engineer or chief designer, was not because I want to, it's because I couldn't hire anyone. Nobody good would join. So I ended up being that by default. And I messed up the first three launches. The first three launches failed. Fortunately the fourth launch which was – that was the last money that we had for Falcon 1 – the fourth launch worked, or that would have been it for SpaceX” Eerste Succes • 28.09.2008 – Dummy satelliet met succes gelanceerd • 14.07.2009 – Maleisische RazakSat in LEO Falcon 9 • 1ste trap met 9 Merlin 1C (1D) – 2de trap met 1 Merlin 1C (1D) • Concurrent met EELV-klasse – Delta IV en Atlas V • Block 5 – Definitieve versie – “Human Rated” • Bedoeld om volledig herbruikbaar te zijn • 2de Trap bleek te moeilijk (brandstof) Falcon 9 Type Ontwikkeling Operationeel #Lanc Falcon 9 v1.0 2005-2010 2010-2013 #5 Falcon 9 v1.1 2010-2013 2013-2016 #15 Falcon 9 Full Thrust 2014-2015 2015-2018 #25 Falcon 9 Block 4 2017-2018 #12 Falcon 9 Block 5 2018- #26 (03.2020) 2015 – Eerste succesvolle terugkeer 1ste trap (op land) 2017 – Eerste keer herbruik 1ste trap Herbruikbaar • Eerst met parachutes (2006 – 2010) • Alle F1-lanceringen, eerste 2 F9-lanceringen • Booster overleefde de terugkeer niet • Parachutesysteem kon nooit uitgetest worden • 2011 – Overschakelen op VTVL • Vertical Takeoff Vertical Landing In Stappen • 09.2012 – 10.2013: Grasshopper • F9 v1.0 Booster met 1 Merlin 1D • Low Attitude – Low Velocity • 8 succesvolle testen – McGregor (Texas) • Laatste vlucht tot 744m hoog, duur 79s • Slechts FAA licentie tot 760 meter • Opgevolgd door F9R Dev1 (R – Reusable) • Gebaseerd op de grotere F9 v1.1 • Licentie tot 3.000 meter • 5 testen in 2014, laatste test ontplofte • Testprogramma stopgezet met apart voertuig – Testen met F9 v1.1-lanceringen De Eerste “Landingen” • F6 (09.2013) • F9 (04.2014) – “Landing” op het water • F10 (07.2014) – “Landing” op het water • F13 (09.2014) – “Landing” op het water • F14 (01.2015) – Harde landing op drone ship • F15 () – “Landing” op het water • F17 (04.2015) – Harde landing op drone ship Succes • 12.2015 – Eerste F9 FT – Eerste landing op land – Succes ! • 04.2016 – Eerste succesvolle landing op een drone ship • 03.2017 – Eerste lancering van een eerder gelanceerde eerste trap • 03.2020 – Vijfde keer dat een eerste trap gelanceerd werd • Ging verloren bij terugkeer (probleem met één van de 9 motoren) • Tweede keer dat in 2020 een eerste trap verloren ging Falcon Heavy Falcon Heavy • Eerste ideeën dateren al van 2004 • Ontwikkeld zonder steun, voor een 500 miljoen dollar • Tegen eind 2013, begin 2014 • Eerste lancering op 6.02.2018 • Nog twee lanceringen in 2019 • Dit jaar één lancering voor het DoD • Falcon Heavy in herbruikbare versie – 100 miljoen per lancering Dragon Cargo & Crew Commercial Orbital Transportation Services • COTS – Niet over de eigenlijke vluchten, maar over de ontwikkeling • In 2005 werd door NASA de vraag gesteld • Twee kandidaten op 18.08.2006 gekozen • RpK – 207 miljoen $ beloofd, maar kregen uiteindelijk 32,1 miljoen $ • SpaceX – 278 miljoen $ wat later steeg tot 396 miljoen $ • RpK (Rocketplane Kistler) – Contract vebroken in 09.2007 • OSC – 170 miljoen $ (in de tweede ronde) dat steeg tot 288 miljoen $ • 3 demonstratievluchten in periode 2008 en 2010 Dragon Demonstratievluchten • 04.06.2010 – Dragon Spacecraft Qualification Unit • Eerste F9 v1.0 • Testen aerodynamische eigenschappen bij lancering • Geen splashdown • 08.12.2010 – COTS Demo Flight 1 – Geslaagde vlucht • 22.05.2012 – COTS Demo Flight 2+ • Samenvoegen van 2de en 3de demovlucht • Geslaagde koppeling met ISS • Enige capsule met terugkeercapaciteit (3.500 kg) Commercial Resupply Services • 23.12.2008 – Eerste CRS-contract (Uitgebreid in 2015 en in 2018) • 1,6 miljard voor SpaceX – 12 vluchten -> 20 vluchten (+ 3 en +5) • 1,9 miljard voor OSC (nu NG) – 8 vluchten -> 10 vluchten • Enkele speciale missies • CRS 1 (4de F9 v1.0) • CRS 2 – Eerste trunk met lading (5de F9 v1.0) • CRS 3 – 2de F9 v1.1 • CRS 7 – Raket ontplofte kort na lancering • CRS 11 – Hardware van CRS 4 • CRS 20 (03.2020) – Laatste v/d eerste reeks Dragon-capsules • Tevens laatste CRS 1-missie CRS 2 • 14.01.2016 – Tweede contract • Lanceringen tussen 2019 en (wellicht) 2024 • Minimum 6 lanceringen • Waarde contracten niet gekend • Drie leveranciers • Northrop Grumman • SpaceX – Nieuwe versie v/d capsule gebaseerd op de Crew Dragon • Sierra Nevada Company (Dream Chaser Cargo System) – Q3 2021 (?) Commercial Crew • Gevraagd – Een capsule • Geschikt voor 4 bemanningsleden, naar het ISS én terug • Ook te gebruiken in noodgevallen (Assured Crew Return) • 24 uur safe haven in geval van noodtoestand • Minstens 210 dagen aan het ISS gekoppeld kunnen blijven Commercial Crew Development Program • CCDev1 – 2010 – Concept & Technologie • 5 kandidaten • Boeing - $18 miljoen – CST-100 • United Launch Alliance - $6.7 miljoen – Emergency Detection System Atlas V • CCDev2 – 2011 • 7 kandidaten • Boeing - $92.3 miljoen (later nog 20,6 miljoen extra) – Verdere CST-100 ontwikkeling • SpaceX - $75 miljoen – Dragon 2 Integrated LAS • United Launch Alliance (ULA) – unfunded – Atlas V Human Rated Commercial Crew Integrated Capability • CCiCAP – Afgewerkte voorstellen, zowel qua capsule als raket als … • Toegekend op 03.08.2012, aangepast op 15.08.2013 • Boeing - $460 miljoen (later nog 20 miljoen extra) – CST-100/Atlas V • Sierra Nevada Corporation - $212.5 miljoen (later nog 15 miljoen extra) – Dream Chaser/Atlas Va) • SpaceX - $440 miljoen (later nog 20 miljoen extra) – Dragon 2/Falcon 9 • Certification Products Contract (CPC) (toegekend 12.2012) – Phase 1 • Boeing - $9.993 miljoen • Sierra Nevada Corporation - $10 miljoen • SpaceX - $9.589 miljoen Boeing – Starliner – Atlas V SpaceX – Crew Dragon – Falcon 9 Commercial Crew Transportation Capability • CCtCAP (in feite CPC Phase 2) • Contracten uitgedeeld op 16.09.2014 • $4,2 miljard voor Boeing – Kreeg later nog 287,2 miljoen dollar • $2,6 miljard voor SpaceX • Onbemande testvlucht – Bemande testvlucht – 6 operationele missies • PCM – Post Certification Mission • Planning: Eerste vlucht in 2015 • Programma kreeg in het begin te weinig geld van het Congress Crew Dragon vs Starliner • 06.05.2015 – Pad Abort Test • 02.03.2019 – Crew Dragon Demo 1 – Onbemande testvlucht, met koppeling aan het ISS en een geslaagde terugkeer op water • 20.04.2019 – Capsule ontploft bij testen Super Draco’s • 04.11.2019 – Pad Abort Test • 20.12.2019 – Orbital Flight Test – Onbemande testvlucht, geen koppeling wegens timer issue, geslaagde terugkeer op land • 19.01.2020 – In-Flight Abort Test (contractueel niet toe verplicht, Boeing doet deze test niet). Video • Ontploffing Crew Dragon • https://www.youtube.com/watch?v=xe4ee56aHSg • Scott Manley: https://www.youtube.com/watch?v=6P063KnI5NI • One Year Anniversary Movie – Crew Dragon Demo 1 • https://www.youtube.com/watch?v=F-wBgsf8jWY SpaceX Crew Dragon Demo 2 • NET – In mei (onder voorbehoud) Starlink Het WWW Wereldwijd Toegankelijk • Aangekondigd in januari 2015 • Wereldwijd breedband netwerk • Hoge snelheid - Lage latency • Februari 2018 – Lancering van twee prototypes • Tintin A en Tintin B • 24.05.2019 – Starlink 0 – 60 satellieten, versie 0.9 • Starlink 1 (11.11.2019) – Starlink 2 (07.01.2020 – Met Darksat) • Starlink 3 (29.01.2020) – Starlink 4 (17.02.2020) • Starlink 5 (18.03.2020) DarkSat • Starlink en de sterrenkundigen • Starlink: 1.584 satellieten • Goedkeuring voor 12.000 extra satellieten • Mogelijke vraag naar nog eens 30.000 exemplaren • DarkSat uitgerust met experimentele coating • Naar verluid 55% donkerder • Mogelijkheid om de satellieten uit te rusten met een “parasol” Nog Wat Info • Worden gelanceerd per 60 exemplaren (OneWeb
Recommended publications
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • Advancements in Rocket Technology
    Advancements in Rocket Technology Prepared by Marcelo Fernando Condori Mendoza Credits: NASA https://www.nasa.gov/exploration/systems/sls/overview.html 1. History of Rocketry Ancient Rockets Rockets for Warfare Rockets as Inventions Early - Mid 20th Century Rockets Space Race Rockets Future Rockets Space Launch System (SLS) Overview NASA’s Space Launch System, or SLS, is an advanced launch vehicle that provides the foundation for human exploration beyond Earth’s orbit. Credits: NASA https://www.nasa.gov/sites/default/files/atoms/files/00 80_sls_fact_sheet_10162019a_final_508.pdf The Power to Explore Beyond Earth’s Orbit To fill America’s future needs for deep space missions, SLS will evolve into increasingly more powerful configurations. The first SLS vehicle, called Block 1, was able to send more than 26 metric tons (t) or 57,000 pounds (lbs.) to orbits beyond the Moon. https://www.nasa.gov/exploration/systems/sls/overview.html Block 1 - Initial SLS Configuration Block 1 - Initial SLS Configuration Credits: NASA What is SpaceX? QUESTION SpaceX headquarters in December Spaceflight Industries will carry and 2017; plumes from a flight of a launch a cluster of Kleos satellites on Falcon 9 rocket are visible overhead the SpaceX Falcon 9 scheduled for launch mid 2021. Space Exploration Technologies Corp., trading as SpaceX, is an American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California, which was founded in 2002 by Elon Mask. An Airbus A321 on final assembly line 3 in the Airbus plant at Hamburg Finkenwerder Airport Main important events The goal was reducing space transportation costs to enable the colonization of Mars.
    [Show full text]
  • Forecast of Upcoming Anniversaries -- September 2018
    FORECAST OF UPCOMING ANNIVERSARIES -- SEPTEMBER 2018 60 Years Ago - 1958 September 17: NASA-ARPA Manned Satellite Panel established. The NASA/Advanced Research Projects Agency Manned Satellite Panel was formed to draft plans for future manned spaceflight. Langley Research Center and Glenn (then Lewis) Research Center were the primary NASA centers involved. September 30: Last day of NACA operations, Washington, D.C. 55 Years Ago - 1963 September 18: Asset 1 launched to an altitude of 39 miles aboard a Thor rocket from Cape Canaveral, Fla. The first successful suborbital lifting body flight, the Asset vehicle served as a proof-of-concept for the idea of a reusable winged spacecraft. September 28: Transit V-B launched by Thor Ablestar at 12:09 p.m. PDT, from Vandenberg AFB. This Transit satellite was the first US satellite to be powered entirely by nuclear electric power (RTGs). 50 Years Ago - 1968 September 5: Zond 5 launched from Baikonur by Proton K, at 21:36 UTC. An unmanned precursor for Soviet circumlunar cosmonaut program, it was the first Soviet circumlunar flight to successfully reenter Earth’s atmosphere. 45 Years Ago – 1973 September 25: Skylab 2, with astronauts Bean, Garriott, and Lousma, splashes down in Pacific Ocean. Crew was retrieved by recovery ship USS New Orleans, 6:20 p.m., EDT. September 26: Concorde 02 flew from Orly Field, Paris France, to Dulles International Airport, Washington, DC, in 3 hours and 33 minutes. The flight was a new speed record for the route. September 27: Soyuz 12 launched aboard a Soyuz rocket from Baikonur at 12:18 UTC.
    [Show full text]
  • Falcon 1 User's Guide
    Falcon 1 Launch Vehicle Payload User’s Guide Rev 7 TABLE OF CONTENTS 1. Introduction 4 1.1. Revision History 4 1.2. Purpose 6 1.3. Company Description 6 1.4. Falcon Program Overview 6 1.5. Mission Management 7 2. Falcon 1 Launch Vehicles 8 2.1. Overview 8 2.1.1. Falcon 1 9 2.1.2. Falcon 1e 11 2.2. Availability 12 2.3. Reliability 13 2.4. Performance 15 2.5. Pricing 16 2.6. Standard Services 16 2.7. Non‐standard Services 16 2.8. Vehicle Axes/Attitude Definitions 17 3. Requirements & Environments 18 3.1. Mass Properties 18 3.2. Payload Interfaces 19 3.2.1. Falcon Payload Attach Fittings 19 3.2.2. Test Fittings and Fitcheck Policy 19 3.2.3. Electrical Design Criteria 19 3.3. Documentation Requirements 21 3.4. Payload Environments 23 3.4.1. Transportation Environments 23 3.4.2. Humidity, Cleanliness and Thermal Control 23 3.4.3. Payload Air Conditioning 24 3.4.4. Launch and Flight Environments 24 4. Facilities 32 4.1. Headquarters – Hawthorne, California 32 4.2. Washington, DC 32 4.3. Test Facility ‐ Central Texas 32 4.4. Launch Site – Kwajalein Atoll 33 4.4.1. Processing Services and Equipment 33 5. Launch Operations 36 5.1. Launch Control Organization 36 5.2. Mission Integration 37 5.2.1. Payload Transport to Launch Site 38 5.2.2. Payload Integration 38 5.2.3. Example Flight Profiles 41 D000973 Rev Falcon 1 User’s Guide ‐ D000973 Rev. 7 Page | 3 6.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Elevation and Deformation Extraction from Tomosar
    Title Elevation and Deformation Extraction from TomoSAR Lang Feng Thesis submitted for the degree of Doctor of Philosophy Mullard Space Science Laboratory Department of Space and Climate Physics University College London 2019 1 This page is intentionally left blank. 2 Author Declaration I, Lang Feng, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. LANG FENG 2019-02-01 3 This page is intentionally left blank. 4 Abstract 3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff- TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM- X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality.
    [Show full text]
  • General Assembly Distr.: Limited 16 February 2007
    United Nations A/AC.105/C.1/L.291 General Assembly Distr.: Limited 16 February 2007 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-fourth session Vienna, 12-23 February 2007 Draft report I. Introduction 1. The Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space held its forty-fourth session at the United Nations Office at Vienna from 12 to 23 February 2007 under the chairmanship of Mazlan Othman (Malaysia). 2. The Subcommittee held […] meetings. A. Attendance 3. Representatives of the following 50 member States of the Committee attended the session: Algeria, Argentina, Australia, Austria, Brazil, Burkina Faso, Canada, Chile, China, Colombia, Cuba, Czech Republic, Ecuador, Egypt, France, Germany, Greece, Hungary, India, Indonesia, Iran (Islamic Republic of), Italy, Japan, Kazakhstan, Libyan Arab Jamahiriya, Malaysia, Morocco, Nigeria, Pakistan, Peru, Philippines, Poland, Portugal, Republic of Korea, Romania, Russian Federation, Saudi Arabia, Slovakia, South Africa, Spain, Sudan, Sweden, Syrian Arab Republic, Thailand, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ireland, United States of America, Venezuela (Bolivarian Republic of) and Viet Nam. 4. At the 658th meeting, on 12 February, the Chairman informed the Subcommittee that requests had been received from Angola, Bolivia, the Dominican Republic, Paraguay, Switzerland, the former Yugoslav Republic of Macedonia and Tunisia to attend the session as observers. Following past practice, those States were invited to send delegations to attend the current session of the Subcommittee and address it, as appropriate, without prejudice to further requests of that nature; that action did not involve any decision of the Subcommittee concerning status but was a courtesy that the Subcommittee extended to those delegations.
    [Show full text]
  • Spacex's Expanding Launch Manifest
    October 2013 SpaceX’s expanding launch manifest China’s growing military might Servicing satellites in space A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS SpaceX’s expanding launch manifest IT IS HARD TO FIND ANOTHER SPACE One of Brazil, and the Turkmensat 1 2012, the space docking feat had been launch services company with as di- for the Ministry of Communications of performed only by governments—the verse a customer base as Space Explo- Turkmenistan. U.S., Russia, and China. ration Technologies (SpaceX), because The SpaceX docking debunked there simply is none. No other com- A new market the myth that has prevailed since the pany even comes close. Founded only The move to begin launching to GEO launch of Sputnik in 1957, that space a dozen years ago by Elon Musk, is significant, because it opens up an travel can be undertaken only by na- SpaceX has managed to win launch entirely new and potentially lucrative tional governments because of the contracts from agencies, companies, market for SpaceX. It also puts the prohibitive costs and technological consortiums, laboratories, and univer- company into direct competition with challenges involved. sities in the U.S., Argentina, Brazil, commercial launch heavy hitters Ari- Teal Group believes it is that Canada, China, Germany, Malaysia, anespace of Europe with its Ariane mythology that has helped discourage Mexico, Peru, Taiwan, Thailand, Turk- 5ECA, U.S.-Russian joint venture Inter- more private investment in commercial menistan, and the Netherlands in a rel- national Launch Services with its Pro- spaceflight and the more robust growth atively short period.
    [Show full text]
  • Ultra-Massive Mimo Communications in the Millimeter Wave and Terahertz Bands for Terrestrial and Space Wireless Systems
    ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS A Dissertation Presented to The Academic Faculty By Shuai Nie In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering College of Engineering Georgia Institute of Technology May 2021 c Shuai Nie 2021 ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS Thesis committee: Dr. Ian F. Akyildiz, Advisor Dr. Gordon Stuber¨ School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology (formerly) Georgia Institute of Technology Dr. Raghupathy Sivakumar, Chair Dr. Chuanyi Ji School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology Georgia Institute of Technology Dr. Manos M. Tentzeris Dr. Ashutosh Dhekne School of Electrical and Computer Engi- School of Computer Science neering Georgia Institute of Technology Georgia Institute of Technology Date approved: April 20, 2021 ACKNOWLEDGMENTS First and foremost, I would like to express my heartiest gratitude to my advisor, Prof. Ian F. Akyildiz, for his continuous support, guidance, and encouragement to me during my Ph.D. journey. I have been blessed to have the opportunity to research under his supervision and learn under his mentorship. He has led me to numerous amazing research opportunities and allowed me to explore new directions of my research interests. I am also grateful to him for his enthusiasm and passion, which not only motivated me to advance towards the completion of this dissertation, but inspired me to embrace the unknowns in my future career.
    [Show full text]
  • The Space Mission at Kwajalein
    THE SPACE MISSION AT KWAJALEIN The Space Mission at Kwajalein Timothy D. Hall, Gary F. Duff, and Linda J. Maciel The United States has leveraged the Reagan The Reagan Test Site (RTS), located on Kwajalein Atoll in the central western Test Site’s suite of instrumentation radars and » Pacific, has been a missile testing facility its unique location on the Kwajalein Atoll to for the United States government since the enhance space surveillance and to conduct early 1960s. Lincoln Laboratory has provided technical space launches. Lincoln Laboratory’s technical leadership for RTS from the very beginning, with Labo- ratory staff serving assignments there continuously since leadership at the site and its connection to May 1962 [1]. Over the past few decades, the RTS suite the greater Department of Defense space of instrumentation radars has contributed significantly to community have been instrumental in the U.S. space surveillance and space launch activities. The space-object identification (SOI) enterprise success of programs to detect space launches, was motivated by early data collected with the Advanced to catalog deep-space objects, and to provide Research Projects Agency (ARPA)-Lincoln C-band exquisite radar imagery of satellites. Observables Radar (ALCOR), the first high-power, wide- band radar. Today, RTS sensors continue to provide radar imagery of satellites to the intelligence community. Since the early 1980s, RTS radars have provided critical data on the early phases of space launches out of Asia. RTS also supports the Space Surveillance Network’s (SSN) catalog-maintenance mission with radar data on high-priority near-Earth satellites and deep-space satellites, including geosynchronous satellites that are not visible from the other two deep-space radar sites, the Millstone Hill radar in Westford, Massachusetts, and Globus II in Norway.
    [Show full text]
  • John F. Muratore 20 Mar 2013
    Space Ground Systems: Let’s Have More Fun ! John F. Muratore 20 Mar 2013 Published by The Aerospace Corporation with permission. “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way ” Charles Dickens A Tale of Two Cities • No absence of challenges – Budget reductions and belt tightening – Competing for talent with other web oriented businesses – Information security threats – Users who are accustomed to consumer electronics and services – The continuing challenge of providing high integrity, high reliability operations This is a difficult time for ground systems providers • We get to work with computers, launch vehicles and spacecraft – how cool is that ? • We have the best tools and technologies for doing our job that we ever have • We have an industrial base that is generating new tools and technologies at an incredible rate • The internet provides a low cost worldwide information distribution infrastructure • There is an opportunity for ground systems developers to provide new services and technologies that revolutionize our businesses However this is also the best of times So the big question is “Why can’t we have more fun ?” • I’ve been involved with a number of ground systems
    [Show full text]
  • Spacex Launch Manifest
    Small Launchers and Small Satellites: Does Size Matter? Does Price Matter? Space Enterprise Council/CSIS - October 26, 2007 “... several ominous trends now compel a reassessment of the current business model for meeting the nation’s needs for military space capabilities.” Adm. Arthur K. Cebrowski (Ret.) Space Exploration Technologies Corporation Spacex.com One of the more worrisome trends, from a U.S. perspective, has been the declining influence of American vehicles in the global commercial launch market. Once one of the dominant players in the marketplace, the market share of U.S. -manufactured vehicles has declined because of the introduction of new vehicles and new competitors, such as Russia, which can offer launches at lower prices and/or with greater performance than their American counterparts. [The Declining Role in the U.S. Commercial Launch Industry, Futron, June 2005] Space Exploration Technologies Corporation Spacex com Current State of the World Launch Market French Firm Vaults Ahead In Civilian Rocket Market Russia Designs Spaceport -Wall Street Journal Complex for South Korea -Itar-Tass Brazil Fires Rocket in Bid to Revive Space Program India Plans to Double -Reuters Satellite Launches Within China to Map "Every Inch" MFuiltvi -ecoYuenatrrys -RIA Novosti of Moon Surface -Reuters Astronomers Call for Arab India to Orbit Israeli Space Agency Spy Satellite in -Arabian Business September -Space Daily China Looking For Military Advantage Over Russia Calls for Building U.S. Space Program Lunar Base -San Francisco Chronicle -Itar-Tass January 11, 2007 - Chinese SC-19 rams into a Chinese weather sat orbiting at 475 miles, scattering 1600 pieces of debris through low-Earth orbit.
    [Show full text]