Musk in Space Elon Musk Zuid-Afrikaan – Canadees – Amerikaan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation . -
Advancements in Rocket Technology
Advancements in Rocket Technology Prepared by Marcelo Fernando Condori Mendoza Credits: NASA https://www.nasa.gov/exploration/systems/sls/overview.html 1. History of Rocketry Ancient Rockets Rockets for Warfare Rockets as Inventions Early - Mid 20th Century Rockets Space Race Rockets Future Rockets Space Launch System (SLS) Overview NASA’s Space Launch System, or SLS, is an advanced launch vehicle that provides the foundation for human exploration beyond Earth’s orbit. Credits: NASA https://www.nasa.gov/sites/default/files/atoms/files/00 80_sls_fact_sheet_10162019a_final_508.pdf The Power to Explore Beyond Earth’s Orbit To fill America’s future needs for deep space missions, SLS will evolve into increasingly more powerful configurations. The first SLS vehicle, called Block 1, was able to send more than 26 metric tons (t) or 57,000 pounds (lbs.) to orbits beyond the Moon. https://www.nasa.gov/exploration/systems/sls/overview.html Block 1 - Initial SLS Configuration Block 1 - Initial SLS Configuration Credits: NASA What is SpaceX? QUESTION SpaceX headquarters in December Spaceflight Industries will carry and 2017; plumes from a flight of a launch a cluster of Kleos satellites on Falcon 9 rocket are visible overhead the SpaceX Falcon 9 scheduled for launch mid 2021. Space Exploration Technologies Corp., trading as SpaceX, is an American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California, which was founded in 2002 by Elon Mask. An Airbus A321 on final assembly line 3 in the Airbus plant at Hamburg Finkenwerder Airport Main important events The goal was reducing space transportation costs to enable the colonization of Mars. -
Forecast of Upcoming Anniversaries -- September 2018
FORECAST OF UPCOMING ANNIVERSARIES -- SEPTEMBER 2018 60 Years Ago - 1958 September 17: NASA-ARPA Manned Satellite Panel established. The NASA/Advanced Research Projects Agency Manned Satellite Panel was formed to draft plans for future manned spaceflight. Langley Research Center and Glenn (then Lewis) Research Center were the primary NASA centers involved. September 30: Last day of NACA operations, Washington, D.C. 55 Years Ago - 1963 September 18: Asset 1 launched to an altitude of 39 miles aboard a Thor rocket from Cape Canaveral, Fla. The first successful suborbital lifting body flight, the Asset vehicle served as a proof-of-concept for the idea of a reusable winged spacecraft. September 28: Transit V-B launched by Thor Ablestar at 12:09 p.m. PDT, from Vandenberg AFB. This Transit satellite was the first US satellite to be powered entirely by nuclear electric power (RTGs). 50 Years Ago - 1968 September 5: Zond 5 launched from Baikonur by Proton K, at 21:36 UTC. An unmanned precursor for Soviet circumlunar cosmonaut program, it was the first Soviet circumlunar flight to successfully reenter Earth’s atmosphere. 45 Years Ago – 1973 September 25: Skylab 2, with astronauts Bean, Garriott, and Lousma, splashes down in Pacific Ocean. Crew was retrieved by recovery ship USS New Orleans, 6:20 p.m., EDT. September 26: Concorde 02 flew from Orly Field, Paris France, to Dulles International Airport, Washington, DC, in 3 hours and 33 minutes. The flight was a new speed record for the route. September 27: Soyuz 12 launched aboard a Soyuz rocket from Baikonur at 12:18 UTC. -
Falcon 1 User's Guide
Falcon 1 Launch Vehicle Payload User’s Guide Rev 7 TABLE OF CONTENTS 1. Introduction 4 1.1. Revision History 4 1.2. Purpose 6 1.3. Company Description 6 1.4. Falcon Program Overview 6 1.5. Mission Management 7 2. Falcon 1 Launch Vehicles 8 2.1. Overview 8 2.1.1. Falcon 1 9 2.1.2. Falcon 1e 11 2.2. Availability 12 2.3. Reliability 13 2.4. Performance 15 2.5. Pricing 16 2.6. Standard Services 16 2.7. Non‐standard Services 16 2.8. Vehicle Axes/Attitude Definitions 17 3. Requirements & Environments 18 3.1. Mass Properties 18 3.2. Payload Interfaces 19 3.2.1. Falcon Payload Attach Fittings 19 3.2.2. Test Fittings and Fitcheck Policy 19 3.2.3. Electrical Design Criteria 19 3.3. Documentation Requirements 21 3.4. Payload Environments 23 3.4.1. Transportation Environments 23 3.4.2. Humidity, Cleanliness and Thermal Control 23 3.4.3. Payload Air Conditioning 24 3.4.4. Launch and Flight Environments 24 4. Facilities 32 4.1. Headquarters – Hawthorne, California 32 4.2. Washington, DC 32 4.3. Test Facility ‐ Central Texas 32 4.4. Launch Site – Kwajalein Atoll 33 4.4.1. Processing Services and Equipment 33 5. Launch Operations 36 5.1. Launch Control Organization 36 5.2. Mission Integration 37 5.2.1. Payload Transport to Launch Site 38 5.2.2. Payload Integration 38 5.2.3. Example Flight Profiles 41 D000973 Rev Falcon 1 User’s Guide ‐ D000973 Rev. 7 Page | 3 6. -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3. -
Elevation and Deformation Extraction from Tomosar
Title Elevation and Deformation Extraction from TomoSAR Lang Feng Thesis submitted for the degree of Doctor of Philosophy Mullard Space Science Laboratory Department of Space and Climate Physics University College London 2019 1 This page is intentionally left blank. 2 Author Declaration I, Lang Feng, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. LANG FENG 2019-02-01 3 This page is intentionally left blank. 4 Abstract 3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff- TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM- X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. -
General Assembly Distr.: Limited 16 February 2007
United Nations A/AC.105/C.1/L.291 General Assembly Distr.: Limited 16 February 2007 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-fourth session Vienna, 12-23 February 2007 Draft report I. Introduction 1. The Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space held its forty-fourth session at the United Nations Office at Vienna from 12 to 23 February 2007 under the chairmanship of Mazlan Othman (Malaysia). 2. The Subcommittee held […] meetings. A. Attendance 3. Representatives of the following 50 member States of the Committee attended the session: Algeria, Argentina, Australia, Austria, Brazil, Burkina Faso, Canada, Chile, China, Colombia, Cuba, Czech Republic, Ecuador, Egypt, France, Germany, Greece, Hungary, India, Indonesia, Iran (Islamic Republic of), Italy, Japan, Kazakhstan, Libyan Arab Jamahiriya, Malaysia, Morocco, Nigeria, Pakistan, Peru, Philippines, Poland, Portugal, Republic of Korea, Romania, Russian Federation, Saudi Arabia, Slovakia, South Africa, Spain, Sudan, Sweden, Syrian Arab Republic, Thailand, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ireland, United States of America, Venezuela (Bolivarian Republic of) and Viet Nam. 4. At the 658th meeting, on 12 February, the Chairman informed the Subcommittee that requests had been received from Angola, Bolivia, the Dominican Republic, Paraguay, Switzerland, the former Yugoslav Republic of Macedonia and Tunisia to attend the session as observers. Following past practice, those States were invited to send delegations to attend the current session of the Subcommittee and address it, as appropriate, without prejudice to further requests of that nature; that action did not involve any decision of the Subcommittee concerning status but was a courtesy that the Subcommittee extended to those delegations. -
Spacex's Expanding Launch Manifest
October 2013 SpaceX’s expanding launch manifest China’s growing military might Servicing satellites in space A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS SpaceX’s expanding launch manifest IT IS HARD TO FIND ANOTHER SPACE One of Brazil, and the Turkmensat 1 2012, the space docking feat had been launch services company with as di- for the Ministry of Communications of performed only by governments—the verse a customer base as Space Explo- Turkmenistan. U.S., Russia, and China. ration Technologies (SpaceX), because The SpaceX docking debunked there simply is none. No other com- A new market the myth that has prevailed since the pany even comes close. Founded only The move to begin launching to GEO launch of Sputnik in 1957, that space a dozen years ago by Elon Musk, is significant, because it opens up an travel can be undertaken only by na- SpaceX has managed to win launch entirely new and potentially lucrative tional governments because of the contracts from agencies, companies, market for SpaceX. It also puts the prohibitive costs and technological consortiums, laboratories, and univer- company into direct competition with challenges involved. sities in the U.S., Argentina, Brazil, commercial launch heavy hitters Ari- Teal Group believes it is that Canada, China, Germany, Malaysia, anespace of Europe with its Ariane mythology that has helped discourage Mexico, Peru, Taiwan, Thailand, Turk- 5ECA, U.S.-Russian joint venture Inter- more private investment in commercial menistan, and the Netherlands in a rel- national Launch Services with its Pro- spaceflight and the more robust growth atively short period. -
Ultra-Massive Mimo Communications in the Millimeter Wave and Terahertz Bands for Terrestrial and Space Wireless Systems
ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS A Dissertation Presented to The Academic Faculty By Shuai Nie In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering College of Engineering Georgia Institute of Technology May 2021 c Shuai Nie 2021 ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS Thesis committee: Dr. Ian F. Akyildiz, Advisor Dr. Gordon Stuber¨ School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology (formerly) Georgia Institute of Technology Dr. Raghupathy Sivakumar, Chair Dr. Chuanyi Ji School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology Georgia Institute of Technology Dr. Manos M. Tentzeris Dr. Ashutosh Dhekne School of Electrical and Computer Engi- School of Computer Science neering Georgia Institute of Technology Georgia Institute of Technology Date approved: April 20, 2021 ACKNOWLEDGMENTS First and foremost, I would like to express my heartiest gratitude to my advisor, Prof. Ian F. Akyildiz, for his continuous support, guidance, and encouragement to me during my Ph.D. journey. I have been blessed to have the opportunity to research under his supervision and learn under his mentorship. He has led me to numerous amazing research opportunities and allowed me to explore new directions of my research interests. I am also grateful to him for his enthusiasm and passion, which not only motivated me to advance towards the completion of this dissertation, but inspired me to embrace the unknowns in my future career. -
The Space Mission at Kwajalein
THE SPACE MISSION AT KWAJALEIN The Space Mission at Kwajalein Timothy D. Hall, Gary F. Duff, and Linda J. Maciel The United States has leveraged the Reagan The Reagan Test Site (RTS), located on Kwajalein Atoll in the central western Test Site’s suite of instrumentation radars and » Pacific, has been a missile testing facility its unique location on the Kwajalein Atoll to for the United States government since the enhance space surveillance and to conduct early 1960s. Lincoln Laboratory has provided technical space launches. Lincoln Laboratory’s technical leadership for RTS from the very beginning, with Labo- ratory staff serving assignments there continuously since leadership at the site and its connection to May 1962 [1]. Over the past few decades, the RTS suite the greater Department of Defense space of instrumentation radars has contributed significantly to community have been instrumental in the U.S. space surveillance and space launch activities. The space-object identification (SOI) enterprise success of programs to detect space launches, was motivated by early data collected with the Advanced to catalog deep-space objects, and to provide Research Projects Agency (ARPA)-Lincoln C-band exquisite radar imagery of satellites. Observables Radar (ALCOR), the first high-power, wide- band radar. Today, RTS sensors continue to provide radar imagery of satellites to the intelligence community. Since the early 1980s, RTS radars have provided critical data on the early phases of space launches out of Asia. RTS also supports the Space Surveillance Network’s (SSN) catalog-maintenance mission with radar data on high-priority near-Earth satellites and deep-space satellites, including geosynchronous satellites that are not visible from the other two deep-space radar sites, the Millstone Hill radar in Westford, Massachusetts, and Globus II in Norway. -
John F. Muratore 20 Mar 2013
Space Ground Systems: Let’s Have More Fun ! John F. Muratore 20 Mar 2013 Published by The Aerospace Corporation with permission. “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way ” Charles Dickens A Tale of Two Cities • No absence of challenges – Budget reductions and belt tightening – Competing for talent with other web oriented businesses – Information security threats – Users who are accustomed to consumer electronics and services – The continuing challenge of providing high integrity, high reliability operations This is a difficult time for ground systems providers • We get to work with computers, launch vehicles and spacecraft – how cool is that ? • We have the best tools and technologies for doing our job that we ever have • We have an industrial base that is generating new tools and technologies at an incredible rate • The internet provides a low cost worldwide information distribution infrastructure • There is an opportunity for ground systems developers to provide new services and technologies that revolutionize our businesses However this is also the best of times So the big question is “Why can’t we have more fun ?” • I’ve been involved with a number of ground systems -
Spacex Launch Manifest
Small Launchers and Small Satellites: Does Size Matter? Does Price Matter? Space Enterprise Council/CSIS - October 26, 2007 “... several ominous trends now compel a reassessment of the current business model for meeting the nation’s needs for military space capabilities.” Adm. Arthur K. Cebrowski (Ret.) Space Exploration Technologies Corporation Spacex.com One of the more worrisome trends, from a U.S. perspective, has been the declining influence of American vehicles in the global commercial launch market. Once one of the dominant players in the marketplace, the market share of U.S. -manufactured vehicles has declined because of the introduction of new vehicles and new competitors, such as Russia, which can offer launches at lower prices and/or with greater performance than their American counterparts. [The Declining Role in the U.S. Commercial Launch Industry, Futron, June 2005] Space Exploration Technologies Corporation Spacex com Current State of the World Launch Market French Firm Vaults Ahead In Civilian Rocket Market Russia Designs Spaceport -Wall Street Journal Complex for South Korea -Itar-Tass Brazil Fires Rocket in Bid to Revive Space Program India Plans to Double -Reuters Satellite Launches Within China to Map "Every Inch" MFuiltvi -ecoYuenatrrys -RIA Novosti of Moon Surface -Reuters Astronomers Call for Arab India to Orbit Israeli Space Agency Spy Satellite in -Arabian Business September -Space Daily China Looking For Military Advantage Over Russia Calls for Building U.S. Space Program Lunar Base -San Francisco Chronicle -Itar-Tass January 11, 2007 - Chinese SC-19 rams into a Chinese weather sat orbiting at 475 miles, scattering 1600 pieces of debris through low-Earth orbit.