Elevation and Deformation Extraction from Tomosar

Total Page:16

File Type:pdf, Size:1020Kb

Elevation and Deformation Extraction from Tomosar Title Elevation and Deformation Extraction from TomoSAR Lang Feng Thesis submitted for the degree of Doctor of Philosophy Mullard Space Science Laboratory Department of Space and Climate Physics University College London 2019 1 This page is intentionally left blank. 2 Author Declaration I, Lang Feng, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. LANG FENG 2019-02-01 3 This page is intentionally left blank. 4 Abstract 3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff- TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM- X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential 5 tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings. 6 Impact Statement A new DEM co-registration algorithm co-aligns two DEMs, which improves the quality of DEM relative accuracy significantly and is suitable and helpful for DEM quality assessment. This method can also be used for merging and fusing bathymetry (seafloor) with land DEM data at the coast region to generate a future global DEM. In addition, this algorithm works well for finding the correct landing site and precise and safe planetary rover landing, which can be used for future planetary rover landing missions. More specifically, the algorithm can be integrated with IMU and DEM- producing sensors in Guidance, Navigation and Control (GNC) system for navigation in different environments (sea, land, air, space and deep space) for different applications. The DEM over the UK (in particular the TanDEM-X IDEM and the TanDEM-X DEM) quality report and statistical analysis results are useful for future DEM users and DEM makers. A new ionospheric correction and mapping method not only addresses the SAR ionospheric accuracy degradation problem, its high-resolution TEC data can also be obtained after processing, which (TEC data) can be used in many other application fields, like communications, radio astronomy, as well as many other terrestrial planets and their satellites (moons), with the same earth-like environment, and so on. The systematic TomoSAR and D-TomoSAR algorithm and methods to retrieve the 3D & 4D information can be potentially useful for many future applications (urban buildings, bridges, dams, forests, and icy regions on the Earth and the Moon) and missions. 7 This page is intentionally left blank. 8 Acknowledgements First and foremost, I would like to express my greatest thanks to my supervisors, Prof. Jan-Peter Muller and Dr Jonathan Rae. Individually, Peter, I thank you for your useful suggestions, excellent guidance, constant encouragement and generous support in my life and study throughout my PhD program in the UK and invaluable time during the writing up of this thesis. I also thank you for helping me to improve my English in each tutorial, all documents feedbacks, and supporting me to take English course to improve my English in Surrey University and UCL, and providing me with countless opportunities to take courses, training and conferences over the last four years. Jonny, I cannot thank you enough for your valuable advice, creative guidance, thought-provoking viewpoints, continuous support, constant encouragement and much of your time in tutorials and reading my thesis. I have been enormously fortunate to have you and Peter as my supervisors. In addition, I would like to express my greatest gratitude to my PhD panel chair, Dr Daisuke Kawata. I appreciate your continuous support, constant encouragement and invaluable advice provided throughout my PhD programme. I also thank you for being positive in my abilities and for being patient in listening and understanding me when I have most needed it. I am also grateful to my examiners, Prof. Shaun Quegan and Prof. Tim Wright, for constructive comments that improved this thesis. I would also like to thank the China Scholarships Council (CSC) and UCL MAPS Dean prize joint research scholarship for providing the financial support, allowing this work to be undertaken. I owe special thanks to a few individuals whose contribution to this project was in some way immense. First, I would like to thank Terri Freemantle from Space Catapult, Harwell space campus for arranging the provision of CORSAIR011 data. Besides, I would like to thank Prof. Tim Wright and Prof. Andy Hooper from the University of Leeds for organising COMET InSAR training workshop 2017 and providing code and data in this workshop and Dr David Bekaert from JPL NASA for providing SAR code. Meanwhile, I would like to thank Prof. Zhenhong Li for his valuable advice, thought- provoking viewpoints and providing GACOS data. Moreover, I would like to thank Prof. Stefano Tebaldini from Politecnico di Milano, Prof. Laurent Ferro-Famil from the University of Rennes for providing data and code and ESA for providing data and 9 organising the ESA 4th advanced course on radar polarimetry. I am grateful to Prof. Jingfa Zhang, Dr Qisong Jiao and Dr Hongbo Jiang from the Institute of Crustal Dynamics, China Earthquake Administration for 2017 fieldwork and collaborations. Moreover, I am grateful to Amy from the University of Colorado and National Snow and Ice Data Center of USA for providing ICESat data and code. I also gratefully acknowledge Dr Randolph Kirk, Elpitha Howington-Kraus from USGS for providing DEM code. Special mention and thanks must go to Prof. Shiyuan Hu, Prof. Miaozhong Xu, Prof. Haigang Sui and Prof. Kaiming Sun, my former supervisors at Wuhan University, for arousing my initial interest and guiding me into the space photogrammetry, remote sensing and GIS field back in 2005. I also would like to thank my former boss Prof. Yingcheng Li at the Chinese Academy of Surveying and Mapping for constant encouragement and generous support in my life and work from 2009 to 2014. There are too many people at the MSSL, UCL that I would like to say thanks to. Edward Malina, thank you for being there whenever I need your advice, help and everyday lift to MSSL during the second year of my PhD. Jason Hunt, thank you for the kindest help provided during the second year of my PhD too. I am grateful to Denis Gonzalez Caniulef, Ravindra Desai, Zakari Tsiga, Jennifer Y H Chan and Georgina Graham for their friendship, support, help and enjoyable time at Ariel House MSSL the first year when I am in the UK. Moreover, I also like to thank our group members Panagiotis Sidiropoulos, Yu Tao, Said Kharbouche, Edward Malina, Alistair Francis and Divya Persaud, Siting Xiong, Alfiah Rizky Diana Putri, Jacqueline Campbell, George Cann, Daoxi Zhang, Luyi Sun, Josh Veitch-Michaelis, Wil Poole for their help, support, useful discussion and all the good times at MSSL in the last 4 years. I am additionally grateful to Edward Malina, Alistair Francis and Divya Persaud for their time spending on proofreading of several chapters of this thesis.
Recommended publications
  • A La Torre Aaker Aalbers Aaldert Aarmour Aaron
    A LA TORRE ABDIE ABLEMAN ABRAMOWITCH AAKER ABE ABLES ABRAMOWITZ AALBERS ABEE ABLETSON ABRAMOWSKY AALDERT ABEEL ABLETT ABRAMS AARMOUR ABEELS ABLEY ABRAMSEN AARON ABEKE ABLI ABRAMSKI AARONS ABEKEN ABLITT ABRAMSON AARONSON ABEKING ABLOTT ABRAMZON AASEN ABEL ABNER ABRASHKIN ABAD ABELA ABNETT ABRELL ABADAM ABELE ABNEY ABREU ABADIE ABELER ABORDEAN ABREY ABALOS ABELES ABORDENE ABRIANI ABARCA ABELI ABOT ABRIL ABATE ABELIN ABOTS ABRLI ABB ABELL ABOTSON ABRUZZO ABBA ABELLA ABOTT ABSALOM ABBARCROMBIE ABELLE ABOTTS ABSALON ABBAS ABELLS ABOTTSON ABSHALON ABBAT ABELMAN ABRAHAM ABSHER ABBATE ABELS ABRAHAMER ABSHIRE ABBATIELLO ABELSON ABRAHAMI ABSOLEM ABBATT ABEMA ABRAHAMIAN ABSOLOM ABBAY ABEN ABRAHAMOF ABSOLON ABBAYE ABENDROTH ABRAHAMOFF ABSON ABBAYS ABER ABRAHAMOV ABSTON ABBDIE ABERCROMBIE ABRAHAMOVITZ ABT ABBE ABERCROMBY ABRAHAMOWICZ ABTS ABBEKE ABERCRUMBIE ABRAHAMS ABURN ABBEL ABERCRUMBY ABRAHAMS ABY ABBELD ABERCRUMMY ABRAHAMSEN ABYRCRUMBIE ABBELL ABERDEAN ABRAHAMSOHN ABYRCRUMBY ABBELLS ABERDEEN ABRAHAMSON AC ABBELS ABERDEIN ABRAHAMSSON ACASTER ABBEMA ABERDENE ABRAHAMY ACCA ABBEN ABERG ABRAHM ACCARDI ABBERCROMBIE ABERLE ABRAHMOV ACCARDO ABBERCROMMIE ABERLI ABRAHMOVICI ACE ABBERCRUMBIE ABERLIN ABRAHMS ACERO ABBERDENE ABERNATHY ABRAHMSON ACESTER ABBERDINE ABERNETHY ABRAM ACETO ABBERLEY ABERT ABRAMCHIK ACEVEDO ABBETT ABEYTA ABRAMCIK ACEVES ABBEY ABHERCROMBIE ABRAMI ACHARD ABBIE ABHIRCROMBIE ABRAMIN ACHENBACH ABBING ABIRCOMBIE ABRAMINO ACHENSON ABBIRCROMBIE ABIRCROMBIE ABRAMO ACHERSON ABBIRCROMBY ABIRCROMBY ABRAMOF ACHESON ABBIRCRUMMY ABIRCROMMBIE ABRAMOFF
    [Show full text]
  • Advancements in Rocket Technology
    Advancements in Rocket Technology Prepared by Marcelo Fernando Condori Mendoza Credits: NASA https://www.nasa.gov/exploration/systems/sls/overview.html 1. History of Rocketry Ancient Rockets Rockets for Warfare Rockets as Inventions Early - Mid 20th Century Rockets Space Race Rockets Future Rockets Space Launch System (SLS) Overview NASA’s Space Launch System, or SLS, is an advanced launch vehicle that provides the foundation for human exploration beyond Earth’s orbit. Credits: NASA https://www.nasa.gov/sites/default/files/atoms/files/00 80_sls_fact_sheet_10162019a_final_508.pdf The Power to Explore Beyond Earth’s Orbit To fill America’s future needs for deep space missions, SLS will evolve into increasingly more powerful configurations. The first SLS vehicle, called Block 1, was able to send more than 26 metric tons (t) or 57,000 pounds (lbs.) to orbits beyond the Moon. https://www.nasa.gov/exploration/systems/sls/overview.html Block 1 - Initial SLS Configuration Block 1 - Initial SLS Configuration Credits: NASA What is SpaceX? QUESTION SpaceX headquarters in December Spaceflight Industries will carry and 2017; plumes from a flight of a launch a cluster of Kleos satellites on Falcon 9 rocket are visible overhead the SpaceX Falcon 9 scheduled for launch mid 2021. Space Exploration Technologies Corp., trading as SpaceX, is an American aerospace manufacturer and space transportation services company headquartered in Hawthorne, California, which was founded in 2002 by Elon Mask. An Airbus A321 on final assembly line 3 in the Airbus plant at Hamburg Finkenwerder Airport Main important events The goal was reducing space transportation costs to enable the colonization of Mars.
    [Show full text]
  • IUGG03-Program.Pdf
    The Science Council of Japan and sixteen Japanese scientific societies will host IUGG2003, the XXIII General Assembly of the International Union of Geodesy and Geophysics. Hosts Science Council of Japan The Geodetic Society of Japan Seismological Society of Japan The Volcanological Society of Japan Meteorological Society of Japan Society of Geomagnetism and Earth, Planetary and Space Sciences Japan Society of Hydrology and Water Resources The Japanese Association of Hydrological Sciences The Japanese Society of Snow and Ice The Oceanographic Society of Japan The Japanese Society for Planetary Sciences The Japanese Society of Limnology Japan Society of Civil Engineers Japanese Association of Groundwater Hydrology The Balneological Society of Japan Japan Society of Erosion Control Engineering The Geochemical Society of Japan Special Support Hokkaido Prefecture City of Sapporo Co-Sponsor National Research Institute for Earth Science and Disaster Prevention (JSS01 Hagiwara Symposium on Monitoring and Modeling of Earthquake and Volcanic Processes for Prediction) Center for Climate System Research, University of Tokyo (JSM01 Toward High Resolution Climate Models and Earth System Models) Support Ministry of Education, Culture, Sports, Science and Technology Ministry of Economy, Trade and Industry Ministry of Land, Infrastructure and Transport Japan Marine Science and Technology Center National Institute of Advanced Industrial Science and Technology Japan Earth and Planetary Science Joint Meeting Organization Japanese Forestry Society Japan Business
    [Show full text]
  • Fichier National Des Sites Classés
    Ministère de la transition écologique et solidaire FICHIER NATIONAL DES SITES CLASSES ( mise à jour 29 décembre 2019) superficie (ha) A : arrêté Région dep commune nom DNP critère date territoire dpm total D : décret La tourbière de Malebronde située à Brenod, parcelle 9 Auvergne-Rhône- 1 Brenod TC A 30 avril 1934 0,2 0,2 Alpes section B Auvergne-Rhône- Alpes 1 Chaley La cascade de Charabotte, à Chaley A A 14 juin 1909 0,24 0,24 Auvergne-Rhône- Alpes 1 Charix Cascade du Moulin de Charix A A 14 juin 1909 0 0 L'ensemble formé par le lac Genin et ses abords situés Auvergne-Rhône- Alpes 1 Charix, Échallon, Oyonnax sur le territoire des communes de Charix, Échallon et TC A 1 mars 1935 50 50 Oyonnax Extension du site du Défilé de Fort l'Écluse sur les communes de Collonges et de Léaz (ne remplaçant pas Auvergne-Rhône- 1 Collonges, Léaz P D 19 mai 1992 1844 1844 Alpes l'arrêté du 6 novembre 1946 que pour la partie concernant la commune de Chevrier en Haute-Savoie) Auvergne-Rhône- Alpes 1 Corveissiat La grotte de Corveissiat A A 8 juin 1909 0 0 Auvergne-Rhône- Alpes 1 Courmangoux, Pressiat Le Mont Myon et ses abords à Courmangoux et Pressiat P A 10 avril 1946 46 46 La Pierre des Marais sur la commune de Divonne-les- Auvergne-Rhône- 1 Divonne-les-Bains A A 14 juin 1909 Alpes Bains L'ensemble formé sur la commune de Fareins par le site Auvergne-Rhône- 1 Fareins P D 1 mars 1982 78,49 78,49 Alpes des abords du château de Fléchères Fareins, Genouilleux, Guéreins, Lurcy, Messimy-sur-Saône, L'ensemble dit "Val de Saône" parmi les sites des Auvergne-Rhône-
    [Show full text]
  • General Assembly Distr.: Limited 16 February 2007
    United Nations A/AC.105/C.1/L.291 General Assembly Distr.: Limited 16 February 2007 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-fourth session Vienna, 12-23 February 2007 Draft report I. Introduction 1. The Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space held its forty-fourth session at the United Nations Office at Vienna from 12 to 23 February 2007 under the chairmanship of Mazlan Othman (Malaysia). 2. The Subcommittee held […] meetings. A. Attendance 3. Representatives of the following 50 member States of the Committee attended the session: Algeria, Argentina, Australia, Austria, Brazil, Burkina Faso, Canada, Chile, China, Colombia, Cuba, Czech Republic, Ecuador, Egypt, France, Germany, Greece, Hungary, India, Indonesia, Iran (Islamic Republic of), Italy, Japan, Kazakhstan, Libyan Arab Jamahiriya, Malaysia, Morocco, Nigeria, Pakistan, Peru, Philippines, Poland, Portugal, Republic of Korea, Romania, Russian Federation, Saudi Arabia, Slovakia, South Africa, Spain, Sudan, Sweden, Syrian Arab Republic, Thailand, Turkey, Ukraine, United Kingdom of Great Britain and Northern Ireland, United States of America, Venezuela (Bolivarian Republic of) and Viet Nam. 4. At the 658th meeting, on 12 February, the Chairman informed the Subcommittee that requests had been received from Angola, Bolivia, the Dominican Republic, Paraguay, Switzerland, the former Yugoslav Republic of Macedonia and Tunisia to attend the session as observers. Following past practice, those States were invited to send delegations to attend the current session of the Subcommittee and address it, as appropriate, without prejudice to further requests of that nature; that action did not involve any decision of the Subcommittee concerning status but was a courtesy that the Subcommittee extended to those delegations.
    [Show full text]
  • Spacex's Expanding Launch Manifest
    October 2013 SpaceX’s expanding launch manifest China’s growing military might Servicing satellites in space A PUBLICATION OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS SpaceX’s expanding launch manifest IT IS HARD TO FIND ANOTHER SPACE One of Brazil, and the Turkmensat 1 2012, the space docking feat had been launch services company with as di- for the Ministry of Communications of performed only by governments—the verse a customer base as Space Explo- Turkmenistan. U.S., Russia, and China. ration Technologies (SpaceX), because The SpaceX docking debunked there simply is none. No other com- A new market the myth that has prevailed since the pany even comes close. Founded only The move to begin launching to GEO launch of Sputnik in 1957, that space a dozen years ago by Elon Musk, is significant, because it opens up an travel can be undertaken only by na- SpaceX has managed to win launch entirely new and potentially lucrative tional governments because of the contracts from agencies, companies, market for SpaceX. It also puts the prohibitive costs and technological consortiums, laboratories, and univer- company into direct competition with challenges involved. sities in the U.S., Argentina, Brazil, commercial launch heavy hitters Ari- Teal Group believes it is that Canada, China, Germany, Malaysia, anespace of Europe with its Ariane mythology that has helped discourage Mexico, Peru, Taiwan, Thailand, Turk- 5ECA, U.S.-Russian joint venture Inter- more private investment in commercial menistan, and the Netherlands in a rel- national Launch Services with its Pro- spaceflight and the more robust growth atively short period.
    [Show full text]
  • Ultra-Massive Mimo Communications in the Millimeter Wave and Terahertz Bands for Terrestrial and Space Wireless Systems
    ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS A Dissertation Presented to The Academic Faculty By Shuai Nie In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering College of Engineering Georgia Institute of Technology May 2021 c Shuai Nie 2021 ULTRA-MASSIVE MIMO COMMUNICATIONS IN THE MILLIMETER WAVE AND TERAHERTZ BANDS FOR TERRESTRIAL AND SPACE WIRELESS SYSTEMS Thesis committee: Dr. Ian F. Akyildiz, Advisor Dr. Gordon Stuber¨ School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology (formerly) Georgia Institute of Technology Dr. Raghupathy Sivakumar, Chair Dr. Chuanyi Ji School of Electrical and Computer Engi- School of Electrical and Computer Engi- neering neering Georgia Institute of Technology Georgia Institute of Technology Dr. Manos M. Tentzeris Dr. Ashutosh Dhekne School of Electrical and Computer Engi- School of Computer Science neering Georgia Institute of Technology Georgia Institute of Technology Date approved: April 20, 2021 ACKNOWLEDGMENTS First and foremost, I would like to express my heartiest gratitude to my advisor, Prof. Ian F. Akyildiz, for his continuous support, guidance, and encouragement to me during my Ph.D. journey. I have been blessed to have the opportunity to research under his supervision and learn under his mentorship. He has led me to numerous amazing research opportunities and allowed me to explore new directions of my research interests. I am also grateful to him for his enthusiasm and passion, which not only motivated me to advance towards the completion of this dissertation, but inspired me to embrace the unknowns in my future career.
    [Show full text]
  • Adams Adkinson Aeschlimann Aisslinger Akkermann
    BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.
    [Show full text]
  • John F. Muratore 20 Mar 2013
    Space Ground Systems: Let’s Have More Fun ! John F. Muratore 20 Mar 2013 Published by The Aerospace Corporation with permission. “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way ” Charles Dickens A Tale of Two Cities • No absence of challenges – Budget reductions and belt tightening – Competing for talent with other web oriented businesses – Information security threats – Users who are accustomed to consumer electronics and services – The continuing challenge of providing high integrity, high reliability operations This is a difficult time for ground systems providers • We get to work with computers, launch vehicles and spacecraft – how cool is that ? • We have the best tools and technologies for doing our job that we ever have • We have an industrial base that is generating new tools and technologies at an incredible rate • The internet provides a low cost worldwide information distribution infrastructure • There is an opportunity for ground systems developers to provide new services and technologies that revolutionize our businesses However this is also the best of times So the big question is “Why can’t we have more fun ?” • I’ve been involved with a number of ground systems
    [Show full text]
  • Spacex Launch Manifest
    Small Launchers and Small Satellites: Does Size Matter? Does Price Matter? Space Enterprise Council/CSIS - October 26, 2007 “... several ominous trends now compel a reassessment of the current business model for meeting the nation’s needs for military space capabilities.” Adm. Arthur K. Cebrowski (Ret.) Space Exploration Technologies Corporation Spacex.com One of the more worrisome trends, from a U.S. perspective, has been the declining influence of American vehicles in the global commercial launch market. Once one of the dominant players in the marketplace, the market share of U.S. -manufactured vehicles has declined because of the introduction of new vehicles and new competitors, such as Russia, which can offer launches at lower prices and/or with greater performance than their American counterparts. [The Declining Role in the U.S. Commercial Launch Industry, Futron, June 2005] Space Exploration Technologies Corporation Spacex com Current State of the World Launch Market French Firm Vaults Ahead In Civilian Rocket Market Russia Designs Spaceport -Wall Street Journal Complex for South Korea -Itar-Tass Brazil Fires Rocket in Bid to Revive Space Program India Plans to Double -Reuters Satellite Launches Within China to Map "Every Inch" MFuiltvi -ecoYuenatrrys -RIA Novosti of Moon Surface -Reuters Astronomers Call for Arab India to Orbit Israeli Space Agency Spy Satellite in -Arabian Business September -Space Daily China Looking For Military Advantage Over Russia Calls for Building U.S. Space Program Lunar Base -San Francisco Chronicle -Itar-Tass January 11, 2007 - Chinese SC-19 rams into a Chinese weather sat orbiting at 475 miles, scattering 1600 pieces of debris through low-Earth orbit.
    [Show full text]
  • 2016 KWPN-NA Top Fives
    2016 KWPN-NA Top Fives Amended 9-29-16* Young Horse Classes Foals/Weanlings: Dressage Foals/Weanlings: Hunter North American Champion North American Champion Leliscia SSF Life’s Grand RYU Governor x Eliscia SSF, ster by UB 40 Grand Cru x Sakura Hill Czar by Alla Czar Owner/Breeder: Carroll and Carol Tolman, Owner: Sheila Murphy and Shirley Murphy Shooting Star Farm Breeder: Ryu Equestrian, Sheila Murphy and Shirley Murphy Reserve Champion Foals/Weanlings: Gelder Levanta S North American Champion Charmeur x Evanta III MMW, keur by UB 40 Lennox Owner/Breeder: Dan & Gina Ruediger, Paganini, crown x Adessa, keur by Koss, preferent Sonnenberg Farm, LLC Owner/Breeder: Beverley Hilton 3rd Lolita Zarma TF Sir Gregory x Eerste Zarma TF, ster /IBOP-D by Westpoint Yearlings: Dressage Owner/Breeder: KC Dunn, Timbach Farm North American Champion 4th Luca Kenny G S.E. Franklin x Zancerre, PROK by Sir Sinclair, keur Sir Donnerhall x Bardot S.E., ster by Florencio, keur Owner: Miller Stables, LLC Breeder: C.H.I. Huisinga-Terllouw Owner: Teresa Crater, Camelot Farm Breeder: Siegi Belz-Fry, Stall Europa 5th Lyric DG El Capone x Woodwind, elite by Contester Reserve Champion Owner/Breeder: DG Bar Breeders, Inc. & Natalie Bryant Kid Rock S.E. Sir Donnerhall II x Volimbria by Contango, preferent Foals/Weanlings: Jumper Owner/Breeder: Siegi Belz-Fry, Stall Europa North American Champion 3rd Karina Sandra TF Last Chapter Fiderbach x Giselle TF stb by Uphill Goodtimes x Nirvana, ster/ preferent by Fleming Owner/Breeder: KC Dunn, Timbach Farm Owner/Breeder: Larry & Kathy Childs, Crooked Post Farm 4th Kalisandra TF Reserve Champion Uno Don Diego x Giasandra TF by Polansky Lady Ada Bloom Owner/Breeder: KC Dunn, Timbach Farm Corland, keur x Feather Bloom by Mr.
    [Show full text]
  • 2013 Commercial Space Transportation Forecasts
    Federal Aviation Administration 2013 Commercial Space Transportation Forecasts May 2013 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) • i • 2013 Commercial Space Transportation Forecasts About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover: The Orbital Sciences Corporation’s Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Table of Contents EXECUTIVE SUMMARY . 1 COMSTAC 2013 COMMERCIAL GEOSYNCHRONOUS ORBIT LAUNCH DEMAND FORECAST .
    [Show full text]