The Space Mission at Kwajalein
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complex Radio Spectral Energy Distributions in Luminous and Ultraluminous Infrared Galaxies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors - Main The Astrophysical Journal Letters, 739:L25 (6pp), 2011 September 20 doi:10.1088/2041-8205/739/1/L25 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. COMPLEX RADIO SPECTRAL ENERGY DISTRIBUTIONS IN LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES Adam K. Leroy1,8, Aaron S. Evans1,2, Emmanuel Momjian3, Eric Murphy4,Jurgen¨ Ott3, Lee Armus5, James Condon1, Sebastian Haan5, Joseph M. Mazzarella5, David S. Meier3,6, George C. Privon2, Eva Schinnerer7, Jason Surace5, and Fabian Walter7 1 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 2 Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904, USA 3 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA 4 Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA 5 Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125, USA 6 New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA 7 Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, Heidelberg D-69117, Germany Received 2011 April 15; accepted 2011 June 21; published 2011 August 29 ABSTRACT We use the Expanded Very Large Array to image radio continuum emission from local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in 1 GHz windows centered at 4.7, 7.2, 29, and 36 GHz. This allows us to probe the integrated radio spectral energy distribution (SED) of the most energetic galaxies in the local universe. -
The Modern Broadcaster's Journey from Satellite to Ip
A CONCISE GUIDE TO… THE MODERN BROADCASTER’S JOURNEY FROM SATELLITE TO IP DELIVERY The commercial communication satellite will celebrate its 60th birthday next year but the concept is far from entering retirement. Nonetheless, as it moves into its seventh decade, the use of the satellite is rapidly evolving. As of 2020, approximately 1,400 communications satellites are orbiting the earth, delivering tens of thousands of TV channels and, increasingly, internet connectivity. Satellite communication is also a vital asset for the TV production industry, allowing live reportage to and from anywhere in the world – almost instantly. 1 Its place in the TV ecosystem is changing, much higher value. It was also well before the however, as it plays a reduced role in the on-demand content revolution. This trend delivery of video – a shift that several has led to the last major shift: the emergence underlying trends have accelerated. The first of multiplatform, over-the-top streaming is a massive proliferation of video content. over the last 15 years, which has eroded the dominance of the linear broadcaster. The Although satellite use in TV production rise of the streaming giants and specialist has been integral to high-profile live news platforms has forced broadcasters to increase and sports coverage, its role is waning. The their overall distribution capacity using last couple of decades has seen a massive Internet Protocol (IP)-centric methods. increase in live content from a broader range of leagues, niche sports, performance The trends impacting satellite’s role in events and 24-hour news networks. This the television landscape are forcing many expansion of content leads to the second broadcasters to look to their future and factor. -
Detecting, Tracking and Imaging Space Debris
r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’. -
Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. -
Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation . -
United States Army Garrison- Kwajalein Atoll Information Handbook
United States Army Garrison- Kwajalein Atoll Information Handbook Produced by DYNCORP INTERNATIONAL LLC Last updated: 4 September 2019 U.S. ARMY GARRISON KWAJALEIN ATOLL/ REAGAN TEST SITE U.S. ARMY INSTALLATION MANAGEMENT COMMAND KWAJALEIN ATOLL, MARSHALL ISLANDS I. INSTALLATION DATA Name of Site: The installation is currently called “United States Army Garrison - Kwajalein Atoll/ Ronald Reagan Ballistic Missile Defense Test Site” (USAG-KA/RTS) effective 01 October 2013. The installation has undergone multiple name changes since its inception: U.S. Army Kwajalein Atoll/ Ronald Reagan Ballistic Missile Defense Test Site (USAKA/RTS) from 15 June 2001 to 01 October 2013; U.S. Army Kwajalein Atoll/ Kwajalein Missile Range (USAKA/KMR) from 01 March 1998 to 15 June 2001; U.S. Army Kwajalein Atoll (USAKA) from 14 November 1986 to 30 September 1997; Kwajalein Missile Range (KMR) from 15 April 1968 to 13 November 1986; Kwajalein Test Site from 1 July 1964 to 14 April 1968. Between 1945 and 30 June 1964, while under the command of the United States Navy, the installation was referred to at various times as the Navy Operating Base Kwajalein, Naval Air Station Kwajalein, Naval Station Kwajalein and Pacific Missile Range Facility (PMRF) Kwajalein. Site Number: NQ100 [for Military Real Property Inventory purposes, assigned by the U.S. Army Chief of Engineers per paragraph 2.2.1 (3) of AR 405-45] U.S. Mail Address: PSC 701-PO Box 26, APO AP 96555-0001 Status: USAG-KA/RTS is a Class II site (Active) of the United States Army and is designated a subordinate activity of the U.S. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
Probability of Collision in the Geostationary Orbit*
PROBABILITY OF COLLISION IN THE GEOSTATIONARY ORBIT* Raymond A. LeClair and Ramaswamy Sridharan MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420 USA, Email: [email protected] ABSTRACT/RESUME The initial Geosynchronous Encounter Analysis (GEA) CRDA spanned two years beginning in mid 1997. The advent of geostationary satellite communication During this period, Lincoln Laboratory provided timely 37 years ago, and the resulting continued launch activ- warning of encounters between Telstar 401 and partner ity, has created a population of active and inactive geo- satellites and precision orbits for these objects for use synchronous satellites which will interact, with genu- in avoidance maneuver planning [1]. In all, 32 en- ine possibility of collision, for the foreseeable future. counters between Telstar 401 and a partner satellite As a result of the failure of Telstar 401 three years ago, were supported in 24 months leading to nine avoidance MIT Lincoln Laboratory, in cooperation with commer- maneuvers incorporated into routine station keeping cial partners, began an investigation into this situation. and six dedicated avoidance maneuvers. This process Under the agreement, Lincoln worked to ensure a col- has led to a validated concept of operations for en- lision did not occur between Telstar 401 and partner counter support at Lincoln. satellites and to understand the scope and nature of the Active problem. The results of this cooperative activity and Satellites recent results to carefully characterize the actual prob- SOLIDARIDAD 02 ANIK E1 04-Oct-1999 ability of collision in the geostationary orbit are de- 114 SOLIDARIDAD 1 GOES 07 scribed. ANIK E2 112 MSAT M01 ) ANIK C1 110 GSTAR 04 deg USA 0114 1. -
Optical Satellite Communication Toward the Future of Ultra High
No.466 OCT 2017 Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications No.466 OCT 2017 National Institute of Information and Communications Technology CONTENTS FEATURE Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications 1 INTERVIEW New Possibilities Demonstrated by Micro-satellites Morio TOYOSHIMA 4 A Deep-space Optical Communication and Ranging Application Single photon detector and receiver for observation of space debris Hiroo KUNIMORI 6 Environmental-data Collection System for Satellite-to-Ground Optical Communications Verification of the site diversity effect Kenji SUZUKI 8 Optical Observation System for Satellites Using Optical Telescopes Supporting safe satellite operation and satellite communication experiment Tetsuharu FUSE 10 Development of "HICALI" Ultra-high-speed optical satellite communication between a geosynchronous satellite and the ground Toshihiro KUBO-OKA TOPICS 12 NICT Intellectual Property -Series 6- Live Electrooptic Imaging (LEI) Camera —Real-time visual comprehension of invisible electromagnetic waves— 13 Awards 13 Development of the “STARDUST” Cyber-attack Enticement Platform Cover photo Optical telescope with 1 m primary mirror. It receives data by collecting light from sat- ellites. This was the main telescope used in experiments with the Small Optical TrAn- sponder (SOTA). This optical telescope has three focal planes, a Cassegrain, a Nasmyth, and a coudé. The photo in the upper left of this page shows SOTA mounted in a 50 kg-class micro- satellite. In a world-leading effort, this was developed to conduct basic research on technology for 1.5-micron band optical communication between low-earth-orbit sat- ellite and the ground and to test satellite-mounted equipment in a space environment. -
Eie312 Communications Principles
EIE312 COMMUNICATIONS PRINCIPLES Outline: Principles of communications: 1. An elementary account of the types of transmission (Analogue signal transmission and digital signal transmission). Block diagram of a communication system. 2. Brief Historical development on communications: a. Telegraph b. Telephony c. Radio d. Satellite e. Data f. Optical and mobile communications g. Facsimile 3. The frequency Spectrum 4. Signals and vectors, orthogonal functions. 5. Fourier series, Fourier integral, signal spectrum, convolution, power and energy correlation. 6. Modulation, reasons for modulation, types of modulation. 7. Amplitude modulation systems: a. Comparison of amplitude modulation systems. b. Methods of generating and detecting AM, DBS and SSB signals. c. Vestigial sideband d. Frequency mixing and multiplexing, frequency division multiplexing e. Applications of AM systems. 8. Frequency modulation systems: 1 a. Instantaneous frequency, frequency deviation, modulation index, Bessel coefficients, significant sideband criteria b. Bandwidth of a sinusoidally modulated FM signal, power of an FM signal, direct and indirect FM generation, c. Various methods of FM demodulation, discriminator, phase-lock loop, limiter, pre- emphasis and de-emphasis, Stereophonic FM broadcasting 9. Noise waveforms and characteristics. Thermal noise, shot noise, noise figure and noise temperature. Cascade network, experimental determination of noise figure. Effects of noise on AM and FM systems. 10. Block diagram of a superheterodyne AM radio receiver, AM broadcast mixer, local oscillator design, intermodulation interference, adjacent channel interference, ganging, tracking error, intermediate frequency, automatic gain control (AGC), delay AGC, diode detector, volume control. 11. FM broadcast band and specification, Image frequency, block diagram of a FM radio receiver, limiter and ratio detectors, automatic frequency control, squelch circuit, FM mono and FM stereo receivers. -
TROPICAL STORM TALAS FORMATION and IMPACTS at KWAJALEIN ATOLL Tom Wright * 3D Research Corporation, Kwajalein, Marshall Islands
J16A.3 TROPICAL STORM TALAS FORMATION AND IMPACTS AT KWAJALEIN ATOLL Tom Wright * 3D Research Corporation, Kwajalein, Marshall Islands 1. INTRODUCTION 4,000 km southwest of Hawaii, 1,350 km north of the equator, or almost exactly halfway Tropical Storm (TS) 31W (later named Talas) between Hawaii and Australia. Kwajalein is the developed rapidly and passed just to the south of largest of the approximately 100 islands that Kwajalein Island (hereafter referred to as comprise Kwajalein Atoll and is located at 8.7° “Kwajalein”), on 10 December 2004 UTC. north and 167.7° east. Kwajalein is the southern-most island of Kwajalein Atoll in the Marshall Islands (see figure 2.2 Topography/Bathymetry 1). Despite having been a minimal tropical storm as it passed, TS Talas had a significant impact The islands that make up Kwajalein Atoll all lie not only on the residents of Kwajalein Atoll, but very near sea level with an average elevation of on mission operations at United States Army approximately 1.5 m above mean sea level. The Kwajalein Atoll (USAKA)/Ronald Reagan Test Site highest elevations are man-made hills which top (RTS). out at approximately 6 m above mean sea level. This paper will describe the development and evolution of TS Talas and its impacts on Kwajalein Atoll and USAKA/RTS. Storm data, including radar, satellite, and surface and upper air observations, and a summary of impacts will be presented. A strong correlation between Tropical Cyclone (TC) frequency and the phase of the El Niño Southern Oscillation (ENSO) has been observed for the Northern Marshall Islands. -
Forecast of Upcoming Anniversaries -- September 2018
FORECAST OF UPCOMING ANNIVERSARIES -- SEPTEMBER 2018 60 Years Ago - 1958 September 17: NASA-ARPA Manned Satellite Panel established. The NASA/Advanced Research Projects Agency Manned Satellite Panel was formed to draft plans for future manned spaceflight. Langley Research Center and Glenn (then Lewis) Research Center were the primary NASA centers involved. September 30: Last day of NACA operations, Washington, D.C. 55 Years Ago - 1963 September 18: Asset 1 launched to an altitude of 39 miles aboard a Thor rocket from Cape Canaveral, Fla. The first successful suborbital lifting body flight, the Asset vehicle served as a proof-of-concept for the idea of a reusable winged spacecraft. September 28: Transit V-B launched by Thor Ablestar at 12:09 p.m. PDT, from Vandenberg AFB. This Transit satellite was the first US satellite to be powered entirely by nuclear electric power (RTGs). 50 Years Ago - 1968 September 5: Zond 5 launched from Baikonur by Proton K, at 21:36 UTC. An unmanned precursor for Soviet circumlunar cosmonaut program, it was the first Soviet circumlunar flight to successfully reenter Earth’s atmosphere. 45 Years Ago – 1973 September 25: Skylab 2, with astronauts Bean, Garriott, and Lousma, splashes down in Pacific Ocean. Crew was retrieved by recovery ship USS New Orleans, 6:20 p.m., EDT. September 26: Concorde 02 flew from Orly Field, Paris France, to Dulles International Airport, Washington, DC, in 3 hours and 33 minutes. The flight was a new speed record for the route. September 27: Soyuz 12 launched aboard a Soyuz rocket from Baikonur at 12:18 UTC.