A Review of Separation Technologies for Salty Wastewater Reduction in the Dairy Industry
Total Page:16
File Type:pdf, Size:1020Kb
A Review of Separation Technologies for Salty Wastewater Reduction in the Dairy Industry G. Q. Chen1, S. L. Gras1,2, S. E. Kentish1* 1 The ARC Dairy Innovation Hub, Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia. 2 The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia Keywords: Wastewater, dairy, salt, desalination, separation, membranes. *Corresponding Author Tel: +61 3 8344 6682 Fax: +61 3 8344 4153 E-mail address: [email protected] ABSTRACT The wastewater discharged by cheese manufacturing processes is highly saline. This waste is generated from whey demineralisation, chromatography and Clean-In-Place processes. Salty effluent can be diluted with other effluents and discharged as trade waste but the high salinity can trigger penalties imposed by local water authorities. Alternatively, such waste can be sent to evaporation ponds, but in some areas in Australia, environmental impacts regarding land degradation, odour and dust have prevented further pond construction. Similar concentrate and brine management issues are emerging in the seawater desalination and mining industries. This paper reviews a range of commercial and emerging separation technologies that may be suitable to both reduce the costs of salty wastewater treatment and to improve the recoveries of dairy and salt-based products. These technologies have been commercialised or applied at a laboratory scale to the fields of desalination and brine concentration. Each technology is discussed in terms of its principle of operation and suitability for treating high salinity dairy wastewater. The potential energy requirement and processing cost of each technology is identified with respect to feed water salinity, to provide additional insights into the energy and cost efficiencies of these technologies. Page I Table of Contents ABSTRACT ..................................................................................................................................................... I 1. INTRODUCTION ...................................................................................................................................... 3 2. TECHNOLOGY REVIEW ............................................................................................................................ 6 2.1 COMMERCIAL TECHNOLOGIES .............................................................................................................................. 6 2.1.1 Thermal Separation ............................................................................................................................... 6 (1) Evaporation Lagoons and Evaporation Enhancement Technologies ..................................................................... 6 (2) Thermal Desalination (Evaporative Processes) ...................................................................................................... 7 (3) Thermal Crystallisers .............................................................................................................................................. 8 (4) Spray Dryers ........................................................................................................................................................... 8 (5) The SAL PROC approach ......................................................................................................................................... 9 2.1.2 Ion Exchange ....................................................................................................................................... 11 2.1.3 Membrane Technologies ..................................................................................................................... 11 (1) Nanofiltration ....................................................................................................................................................... 11 (2) Reverse Osmosis .................................................................................................................................................. 12 (3) Patented High-Recovery Systems ........................................................................................................................ 12 (4) Electrodialysis ...................................................................................................................................................... 13 2.2 EMERGING TECHNOLOGIES ................................................................................................................................ 17 2.2.1 Thermal Evaporation and Crystallisation ............................................................................................ 17 (1) Ohmic Evaporation ............................................................................................................................................... 17 (2) Aquamill Process .................................................................................................................................................. 17 2.2.2 Freeze Desalination (Freeze-thaw) ...................................................................................................... 19 2.2.3 Eutectic Freeze Crystallisation (EFC) ................................................................................................... 21 2.2.4 Sonocrystallisation .............................................................................................................................. 22 2.2.5 Clathrate/Hydrate Desalination Processes ......................................................................................... 23 2.2.6 Corrosion Resistant Materials ............................................................................................................. 24 2.2.7 Membrane Technologies ..................................................................................................................... 25 (1) Membrane Distillation ......................................................................................................................................... 25 (2) Forward Osmosis ................................................................................................................................................. 26 (3) Salinity Gradient Power ....................................................................................................................................... 28 (4) Membrane Capacitive Deionisation ..................................................................................................................... 29 (5) Bioelectrochemical System (BES) ......................................................................................................................... 30 3. PERFORMANCE PARAMETERS ............................................................................................................... 32 4. CONCLUSIONS ...................................................................................................................................... 36 ACKNOWLEDGEMENTS .............................................................................................................................. 36 REFERENCES ............................................................................................................................................... 37 Page II 1. INTRODUCTION As Australia’s third largest rural industry, the dairy industry processes more than 9,500 million litres of milk annually (1). Depending on the product mix, dairy and milk processes produce 0.2-11 litres of effluent per litre of processed milk with a polluting charge of 0.2-2.5 gL-1 biological oxygen demand (BOD) (2). Utilization and treatment of these waste streams depends heavily upon the wastewater quantity, local government regulations, stream characteristics and economic factors. Since 30% of milk production in Australia is utilised for cheese manufacturing (1), discharging a large volume of sodium salts to the environment is one of the causes of dryland salinity facing rural and regional Australia. In 2007, over 6.7 billion litres of milk was processed annually in Victoria, Australia. A total of 24 factories in Victoria discharged 10,000 million litres of wastewater and 3,400 tonnes of sodium in a single year. Over $20 million was spent on managing the milk processing related waste (3, 4). The cost of inland salinity to the Australian community, however, is less known. A study by Wilson (5) reported that dryland salinity had cost >$300 million per annum for the community of the Murray-Darling Basin, a large geographical area (>1 million square km) in the interior of South-eastern Australia. This includes costs to agricultural producers, households, commerce and industry. Our recent survey (6) identified that salty streams originating from dairy processing operations include chromatography wastes, clean-in-place (CIP) wastewater, acid whey and waste generated from whey demineralisation processes including nanofiltration, electrodialysis and ion exchange. These processes either introduce salts to the process or remove salts from dairy fluids to produce value added products. For example, salt (sodium chloride) is added to protein-rich cheese curds to reduce the water activity within the curd when making semi hard or hard cheese (e.g. Cheddar and Colby). The excessive moisture is expelled during the salting and pressing processes, together with a significant amount (50-65%) of the added salt, forming