External Examination of Seabirds: Plumage & Morphometrics

Total Page:16

File Type:pdf, Size:1020Kb

External Examination of Seabirds: Plumage & Morphometrics External Examination of Seabirds: Plumage & Morphometrics Quantitative analysis of form, encompasses size and shape Seabird Topography ➢ Naming Conventions: • Parts of the body • Types of feathers (Harrison 1983) Types of Feathers Coverts: Rows bordering and overlaying the edges of the tail and wings on both the lower and upper sides of the body. Help streamline shape of the wings and tail and provide the bird with insulation. Feather Tracks ➢ Feathers are not attached randomly. • They occur in linear tracts called pterylae. • Spaces on bird's body without feather tracts are called apteria. • Densest area for feather tracks is head and neck. • Feathers arranged in distinct layers: contour feathers overlay down. Generic Pterylae Types of Feathers Contour feathers: outermost feathers. Define the color and shape of the bird. Contour feathers lie on top of each other, like shingles on a roof. Shed water, keeping body dry and insulated. Each contour feather controlled by specialized muscles which control their position, allowing the bird to keep the feathers in clean and neat condition. Specialized contour feathers used for flight: delineate outline of wings and tail. Types of Feathers Flight feathers – special contour feathers Define outline of wings and tail Long and stiff Asymmetrical those on wings are called remiges (singular remex) those on tail are called retrices (singular retrix) Types of Flight Feathers Remiges: Largest contour feathers (primaries / secondaries) Responsible for supporting bird during flight. Attached by ligaments or directly to the wing bone. Types of Flight Feathers Flight feathers – special contour feathers Rectrices: tail feathers provide flight stability and control. Connected to each other by ligaments, with only the inner- most feathers attached to bone. Naming Convention: Retrices and Remiges Primaries: count down from outer-most (p10, p9, … p1) Secondaries: count up from outer-most (s1, s2, … s10) Retrices: count up from one side of the tail (either one) (Pyle 2008) Wing Topography Quantitative analysis of form – Naming Conventions What Wing Feathers do you need to Know ? Primaries, Secondaries, Coverts, Tertials, Scapulars Scapulars: Small feathers on the shoulder. In flight, located at base of wing's leading edge. Tertials: Protective cover for folded primaries and secondaries; Not true flight feathers because they are not attached to wing bone. Feather Topography Stiff central shaft runs A Typical Wing Feather: entire length of feather. Consists of 2 distinct sections: The calamus is the part of the shaft closest to the bird's body. It is hollow and without any vanes. The rachis is the distal end of the shaft. The rachis is solid and is defined as the area to Note the assymmetry of the which vanes are attached. vanes: outer vs. inner Feather Topography Vanes extend from each side of the feather. Series of parallel branches called barbs make up vane. Series of branchlets (barbules) extend from the barbs. Tiny hooklets tie the barbules and barbs together. This architecture makes feathers strong and light. Types of Feathers The shape and stiffness of the feathers are driven by its uses: - Insulation (down and semiplumes) - Flight (tail and wings) - Mechanoreception (filoplumes, bristles) Tail Feathers Naming Conventions • Types of tails Streamers in RTTR (Harrison 1983) Types of Feathers Down: for keeping birds warm. Rachis either missing completely or substantially reduced in length. Barbules lack hooks. Results in very soft and fluffy feather. Without hooks, barbs and barbules create insulating air pockets. Natal downs are present on well developed hatchlings that can almost immediately walk or swim. Other chicks, which save energy by not producing down, are able to absorb the body heat of parent bird more easily. Altricial Precocial Down in Adult Birds Breeding birds develop a brood patch of down: Number and position depends on number of eggs in the species … and their phylogeny. Brood patch can range from exposed skin (no feathers), to regrown down to fully feathered Wing Topography Primaries: connected to manus (bird's "hand“), consisting of the carpometacarpus and the phalanges; longest and narrowest of the remiges (especially ones attached to phalanges), and can be individually rotated. Secondaries: connected to the ulna. Secondary feathers remain close together in flight (cannot be individually separated like primaries) and help to provide lift by creating airfoil shape of the bird's wing. Wing Osteology Arm section 1. Upper arm – humerus 2. Sesamoid bone 3. Lower arm - ulna 4. Lower arm - radius Hand section (manus) 5. Wrist - radiale and ulnare 6. Metacarpal - carpometacarpus 7. Thumb - alula 8. Digits - phalanges Wing Osteology Find these parts in your bird : elbow wrist thumb The Alula - or winglet Bird’s thumb is covered by very stiff and short feathers, called the alular quills Introduction to Morphometrics Lab Standardized measuring and recording of data www.pelagicos.net/pdfs/necropsy/AlterraRapport_0672_withcover.pdf Species Identifications 99: FFSH (P. carneipes) 101a, b: WTSH (P. pacificus) 103: SOSH (P. griseus) 104: STSH (P. tenuirostris) (Harrison 1983) External Features (Harrison 1987) External Features Diagnostics: • Size • Color • Jizz: “feeling the bird gives you when you see it” (Harrison 1983) Introduction to Seabird Necropsies • Each student will measure / record data for one bird • Turn in the form to instructor at the end of class • NOTE: do not put cotton ball in bird’s mouth until you take the bill measurements Necropsies – External Observations 1) Noting and recording the condition of your specimen Check for the following: • Completeness / Freshness • Trauma: bleeding • Entanglement / Oiling Record Information on Sheet: Necropsies – External Observations Why do we record freshness ? NOTE: score can be changed once we open up the bird Necropsies – External Observations Why do we record completeness ? NOTE: we only necropsy complete (CC code) birds Necropsies – External Observations 2) Examining and recording plumage of your specimen: Check for the following: • Color Morph (light / dark) • Molt (wings / tail) • Down (ventral / dorsal) • Incubation patch, P9 vs P10 Record Information on Sheet: Necropsies – External Observations Score each primary feather from the left and right wings Score the tail, from one end to the other (Note: 12 retrices) Check for brood patch and for external molt (body / secondaries) Necropsies – External Observations • Evidence of Molting: Pin feathers, Abnormal feathers Body Molt Tail Molt Necropsies – External Observations • Evidence of Molting: Waxy sheath covering feather Wing Molt Tail Molt Necropsies – External Observations • Examples of Brood Patches: Ranging from bare skin to fully feathered (regrown or nor present) Bare Downy NOTE: Record Estimate % of down, bare skin and feathers Necropsies – External Observations 3) Get “measurements” of your bird – Sarah D. & David: Measure the following: • Culmen length / depth • Wing length (relaxed) • Tarsus length • Head length • Mass (in grams) NOTE: use metric system Record Information on Sheet: Necropsies – External Observations • Making Seabird Morphometrics Measurements NOTE: For wing chord, note if wing is fully grown (P10 > P9). Check right and left wings and record P10/P9 score on sheet, as follows: P10 > P9: code of “3” P10 = P9: code of “2” P10 < P9: code of “1” Necropsies – External Observations • How to Make Bird Morphometrics Measurements NOTE: we are only making measurements A, not B Necropsies – External Observations Note: Before You are done: Transcribe information from tag ID onto necropsy sheet (Note: Keep id tag with the bird on the tray) • Necropsy Date: 09 – 21 – 2018 • Species: WTSH (Wedge-Tailed Shearwater) • Collection number: YYYY – NNN (year and specimen number) • Dissected By: YOUR NAME • Finder: “SLP” (sea life park) • Country / Location / Date: • Other Comments: cause of death, trauma (?) Necropsies – External Observations Once your data sheet is complete and checked out: • Place cotton ball in bird’s mouth • Bag your bird • Staple ID in outside of the bag • Place in “dead bird” tub Next week we will get into the birds… Bring closed – toed shoes. Bring own lab coat, if you have one. Necropsies – Preparing Vials For each bird, we have two cryovials and two bags: ➢ 2 Cryovials for isotopes: Muscle / Liver • Label with pen on blue painter’s tape • Write down Bird ID and tissue: Liver OR Muscle ➢ 2 Whirl Packs: Feathers / Isotopes • Label whirl pack with black sharpie • Add piece of write-in-the-rain paper • Write down Bird ID and: ”Isotopes” OR “Feathers” ➢ Take 4 – 5 breast feathers, place in “feather bag” ➢ Place “feather bag” into “isotope bag” ➢ Place cryovials into “isotope bag” Making Wing Measurements ➢ Weight (to the closest gram): ➢ Lay out bird on its back and stretch the wings out. Making Wing Measurements Inside of the wing outline, write the following: - Bird ID (WTSH 2017-100) - Bird Mass (to the closest gram).
Recommended publications
  • Magnificent Magpie Colours by Feathers with Layers of Hollow Melanosomes Doekele G
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb174656. doi:10.1242/jeb.174656 RESEARCH ARTICLE Magnificent magpie colours by feathers with layers of hollow melanosomes Doekele G. Stavenga1,*, Hein L. Leertouwer1 and Bodo D. Wilts2 ABSTRACT absorption coefficient throughout the visible wavelength range, The blue secondary and purple-to-green tail feathers of magpies are resulting in a higher refractive index (RI) than that of the structurally coloured owing to stacks of hollow, air-containing surrounding keratin. By arranging melanosomes in the feather melanosomes embedded in the keratin matrix of the barbules. barbules in more or less regular patterns with nanosized dimensions, We investigated the spectral and spatial reflection characteristics of vivid iridescent colours are created due to constructive interference the feathers by applying (micro)spectrophotometry and imaging in a restricted wavelength range (Durrer, 1977; Prum, 2006). scatterometry. To interpret the spectral data, we performed optical The melanosomes come in many different shapes and forms, and modelling, applying the finite-difference time domain (FDTD) method their spatial arrangement is similarly diverse (Prum, 2006). This has as well as an effective media approach, treating the melanosome been shown in impressive detail by Durrer (1977), who performed stacks as multi-layers with effective refractive indices dependent on extensive transmission electron microscopy of the feather barbules the component media. The differently coloured magpie feathers are of numerous bird species. He interpreted the observed structural realised by adjusting the melanosome size, with the diameter of the colours to be created by regularly ordered melanosome stacks acting melanosomes as well as their hollowness being the most sensitive as optical multi-layers.
    [Show full text]
  • The Molecular Evolution of Feathers with Direct Evidence from Fossils
    The molecular evolution of feathers with direct evidence from fossils Yanhong Pana,1, Wenxia Zhengb, Roger H. Sawyerc, Michael W. Penningtond, Xiaoting Zhenge,f, Xiaoli Wange,f, Min Wangg,h, Liang Hua,i, Jingmai O’Connorg,h, Tao Zhaoa, Zhiheng Lig,h, Elena R. Schroeterb, Feixiang Wug,h, Xing Xug,h, Zhonghe Zhoug,h,i,1, and Mary H. Schweitzerb,j,1 aChinese Academy of Sciences Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bDepartment of Biological Sciences, North Carolina State University, Raleigh, NC 27695; cDepartment of Biological Sciences, University of South Carolina, Columbia, SC 29205; dAmbioPharm Incorporated, North Augusta, SC 29842; eInstitute of Geology and Paleontology, Lingyi University, Lingyi City, 27605 Shandong, China; fShandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; gCAS Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; hCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China; iCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China; and jNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, December 15, 2018 (sent for review September 12, 2018; reviewed by Dominique G. Homberger and Chenxi Jia) Dinosaur fossils possessing integumentary appendages of various feathers in Anchiornis, barbules that interlock to form feather morphologies, interpreted as feathers, have greatly enhanced our vanes critical for flight have not been identified yet (12).
    [Show full text]
  • Screaming Biplane Dromaeosaurs of the Air. June/July
    5c.r~i~ ~l'tp.,ne pr~tl\USp.,urs 1tke.A-ir Written & illustrated by Gregory s. Paul It is questionable whether anyone even speculated that some dinosaurs were feathered until Ostrom detailed the evidence that birds descended from predatory avepod theropods a third of a century ago. The first illustration of a feathered dinosaur was a nice little study of a well ensconced Syntarsus dashing down a dune slope in pursuit of a gliding lizard in Robert Bakker's classic "Dinosaur Renaissance" article in the April 1975 Scientific American by Sarah Landry (can also be seen in the Scientific American Book of the Dinosaur I edited). My first feathered dinosaur was executed shortly after, an inappropriately shaggy Allosaurus attacking a herd of Diplodocus. I was soon doing a host of small theropods in feathers. Despite the logic of feath- / er insulation on the group ancestral birds and showing evidence of a high level energetics, images of feathered avepods were often harshly and unsci- Above: Proposed relationships based on flight adaptations of entifically criticized as unscientific in view of the lack of evidence for their preserved skeletons and feathers of Archaeopteryx, a generalized presence, ignoring the equal fact that no one had found scales on the little Sinornithosaurus, and Confuciusornis, with arrows indicating dinosaurs either. derived adaptations not present in Archaeopteryx as described in In the 1980s I further proposed that the most bird-like, avepectoran text. Not to scale. dinosaurs - dromaeosaurs, troodonts, oviraptorosaurs, and later ther- izinosaurs _were not just close to birds and the origin of flight, but were see- appear to represent the remnants of wings converted to display devices.
    [Show full text]
  • Colour De Verre Molds: Feather
    REUSABLE MOLDS FOR GLASS CASTING With either product, clean the See our website’s Learn section for mold with a stiff nylon brush and/ more instructions about priming or toothbrush to remove any old Colour de Verre molds with ZYP. kiln wash or boron nitride. (This step can be skipped if the mold is Filling the Feather brand new.) The suggested fill weight for the Feather is 330 to 340 grams. The If you are using Hotline Primo most simple way to fill the Feather Primer, mix the product according mold is to weigh out 330 of fine to directions. Apply the Primo frit and to evenly distribute the frit Primer™ with a soft artist’s brush in the mold. Fire the mold and frit (not a hake brush) and use a hair according the Casting Schedule Feather dryer to completely dry the coat. below. This design is also a perfect Create feathers that are as fanci- Give the mold four to five thin, candidate for our Wafer-Thin ful or realistic as you like with even coats drying each coat with a technique. One can read more Colour de Verre’s Feather de- hair dryer before applying the about this at www.colourdeverre.- sign. Once feathers are cast, next. Make sure to keep the Primo they can be slumped into amaz- com/go/wafer. ing decorative or functional well stirred as it settles quickly. pieces. The mold should be totally dry before filling. There is no reason to nnn pre-fire the mold. To use ZYP, hold the can 10 to 12 Feathers are a design element that inches from the mold.
    [Show full text]
  • Feathered Dinosaurs and the Origin of Flight
    Feathered Dinosaurs and the Origin of Flight Exhibition Organized and Circulated by: The Dinosaur Museum, Utah The Fossil Administration Office, Liaoning, China Beipiao City Paleontological Research Center, Liaoning, China THE PREHISTORIC WORLD OF LIAONING The fossils of Liaoning represent a complex ecosystem creating a more complete picture of this particular age of dinosaurs than ever before. Life of the Early Cretaceous, 120 million years ago, was far more than a world of dinosaurs. The fossils include a remarkable variety of plants, crustaceans, insects, fish, amphibians, lizards, crocodiles, aquatic reptiles, flying reptiles, as well as birds that could fly and others which were flightless. FEATHERS BEFORE BIRDS Included are graphics and photos which show developmental stages of feathers. The fossil of the flying reptile, Pterorhynchus is preserved with details of what pterosaurs looked like which have never been seen before. The body is covered with down-like feathers which resemble those also found on the dinosaur, Sinosauropteryx. Because feathers are now known to exist on animals other than birds, this discovery changes the definition of what a bird is. Pterorhynchus Sinosauropteryx FLYING DROMAEOSAURS AND THE MISTAKEN IDENTITY Dromaeosaurs have been thought to be ground-dwelling dinosaurs that represented ancestral stages of how birds evolved. Fossils in this exhibit show that they have been misinterpreted as dinosaurs when they are actually birds. Feather impressions reveal that they had flight feathers on the wings and a second set on the hind legs. Even without the feathers preserved, the avian characteristics of the skeleton demonstrate that these dromaeosaurs are birds. This discovery means that the larger dromaeosaurs, like Deinonychus and Velociraptor of “Jurassic Park” fame, were really feathered and are secondarily flightless birds.
    [Show full text]
  • Feather Loss and Feather Destructive Behavior in Pet Birds
    REVIEW FEATHER LOSS AND FEATHER DESTRUCTIVE BEHAVIOR IN PET BIRDS Jonathan Rubinstein, DVM, Dip. ABVP (Avian), and Teresa Lightfoot, DVM, Dip. ABVP (Avian) Abstract Feather loss in psittacine birds is an extremely common and extremely frustrating clinical presentation. Causes include medical and non-medical causes of feather loss both with and without overt feather destructive behavior. Underlying causes are myriad and include inappropriate husbandry and housing; parasitic, viral and bacterial infections; metabolic and allergic diseases; and behavioral disorders. Prior to a diagnosis of a behavioral disorder, medical causes of feather loss must be excluded through a complete medical work-up including a comprehensive history, physical exam, and diagnostic testing as indicated by the history, signalment and clinical signs. This article focuses on some of the more common medical and non-medical causes of feather loss and feather destructive behavior as well as approaches to diagnosis and treatment. Copyright 2012 Published by Elsevier Inc. Key words: feather destructive behavior; psittacine; behavioral disorder; feather-picking; avian behavior eather loss is one of the more common and frustrating reasons that avian patients are presented to veterinary hospitals. Several factors make the treatment of feather loss difficult. The initial problem lies in the relative scarcity of controlled studies related to the underlying causes of feather loss in companion avian species and the paucity of current veterinary medical knowledge regarding feather loss and feather destructive behavior (FDB). Although many medical and environmental conditions Fhave been associated with FDB, few have been proven to be causal. Wherever possible, this article references applicable controlled studies, although they are few.
    [Show full text]
  • Avian Feathers Function, Structure & Coloration
    A Feather from the Whippoorwill (Emily Dickinson, 1955) A feather from the Whippoorwill That everlasting -- sings! Whose galleries -- are Sunrise – Whose Opera -- the Springs – Whose Emerald Nest the Ages spin Of mellow -- murmuring thread – Whose Beryl Egg, what Schoolboys hunt In "Recess" -- Overhead! Photograph by Robert Clark—Audubon Magazine 2012 Avian Feathers Function, Structure & Coloration • Tremendous Investment – 25,000 on Tundra Swan – 2-4,000 on songbirds – 970 on hummingbird • Feather Mass=2-3X Skeletal Mass • 91% Protein (keratin) 1% Fat, 8% water • Waxy secretions and fatty acids from uropygial gland protect feathers Feather Outline • Functions in addition • Coloration to flight – Pigments – Structural Colors • Structure & Variation • Origin of feather color and recent fossil discoveries Do feathers have a function or are they just an expensive costume? • Insulation • Sound production • Sound capture • Camouflage • Aerodynamics • Sexual selection • Protection • Nesting, diet, other Diverse Functions • Crypticity – Disruptive color patterns in Killdeer and meadowlarks – Mimicry in bitterns, snipe, and woodcock Diverse Functions • Sound production for attraction – Booming of Ruffed Grouse wings – Primary flight feathers of American Woodcock – Hummingbirds • You Tube Hummingbird Music – Manakins • Manakin Wing Sound Diverse Functions • Sound gathering properties of owls and some hawks – Eastern Screech Owl – Northern Harrier (hawk) http://www.wisenaturephotos.com/NEW!!!%202-10-06.htm Diverse Functions • Support – Tail rectrices
    [Show full text]
  • The Oldest Record of Ornithuromorpha from the Early Cretaceous of China
    ARTICLE Received 6 Jan 2015 | Accepted 20 Mar 2015 | Published 5 May 2015 DOI: 10.1038/ncomms7987 OPEN The oldest record of ornithuromorpha from the early cretaceous of China Min Wang1, Xiaoting Zheng2,3, Jingmai K. O’Connor1, Graeme T. Lloyd4, Xiaoli Wang2,3, Yan Wang2,3, Xiaomei Zhang2,3 & Zhonghe Zhou1 Ornithuromorpha is the most inclusive clade containing extant birds but not the Mesozoic Enantiornithes. The early evolutionary history of this avian clade has been advanced with recent discoveries from Cretaceous deposits, indicating that Ornithuromorpha and Enantiornithes are the two major avian groups in Mesozoic. Here we report on a new ornithuromorph bird, Archaeornithura meemannae gen. et sp. nov., from the second oldest avian-bearing deposits (130.7 Ma) in the world. The new taxon is referable to the Hongshanornithidae and constitutes the oldest record of the Ornithuromorpha. However, A. meemannae shows few primitive features relative to younger hongshanornithids and is deeply nested within the Hongshanornithidae, suggesting that this clade is already well established. The new discovery extends the record of Ornithuromorpha by five to six million years, which in turn pushes back the divergence times of early avian lingeages into the Early Cretaceous. 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China. 2 Institue of Geology and Paleontology, Linyi University, Linyi, Shandong 276000, China. 3 Tianyu Natural History Museum of Shandong, Pingyi, Shandong 273300, China. 4 Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales 2019, Australia.
    [Show full text]
  • Alula Characteristics As Indicators of Golden-Cheeked Warbler Age
    Alula Characteristics as Indicators of Golden-cheeked Warbler Age Rebecca G. Peak and Daniel J. Lusk (SY) birds from older age classes. Dwight (1900) P.O. Box 5190 first illustrated the utility of molt limits in ageing Fort Hood, TX 76544 passerines. More recent literature on the use of molt [email protected] limits to age North American passerines provide detailed descriptions ofhow to distinguish different feather generations from each other for a variety of ABSTRACT species (Yunick 1984, Pyle et al. 1987, Mulvihill 1993, Pyle 1997a, Pyle 1997b ). We assessed the alula ofGolden-cheeked Warblers (Dendroica chrysoparia) to determine its usefulness Dendroica warblers retain greater primary coverts as a criterion for age determination. We compared (hereafter "primary coverts") from the juvenal the alula to the greater secondary coverts for color plumage but replace greater secondary coverts contrast and examined it for presence of white. (hereafter "greater coverts") during the first Overall, 98.2% ofsecond-year birds had an alula/ prebasic molt (Pyle et al. 1987). Hence, greater secondary covert contrast; whereas, I 00% comparison of color and extent of wear between of after-second-year birds did not have a contrast these feather groups is useful for ageing members between these feather groups. All after-second­ of this genus. The contrast between primary and year birds had white on the alula. Our data greater coverts can be challenging for inexperi­ demonstrate that these characteristics are reliable enced banders to recognize. These feather groups indicators of age for Golden-cheeked Warblers. are small, the color difference is often difficult for Still, we advocate using them in combination with the untrained eye to discern, and some of these existing ageing criteria to enhance the confidence species replace the inner greater coverts during of banders' age determinations, especially during prealternate molts.
    [Show full text]
  • On the Role of the Alula in the Steady Flight of Birds
    Ardeola 48(2), 2001, 161-173 ON THE ROLE OF THE ALULA IN THE STEADY FLIGHT OF BIRDS J. C. ÁLVAREZ*1, J. MESEGUER*, E. MESEGUER* & A. PÉREZ** SUMMARY.—On the role of the alula on the steady flight of birds. The alula is a high lift device located at the leading edge of the birds wings that allows these animals to fly at larger angles of attack and lower speeds without wing stalling. The influence of the alula in the wing aerodynamics is similar, to some extent, to that of leading edge slats in aircraft wings, which are only operative during take-off and landing operations. In this paper, representative parameters of the wing geometry including alula position and size of forty species of birds, are reported. The analysis of the reported data reveals that both alula size and position depend on the ae- rodynamic characteristics (wing load and aspect ratio) of the wing. In addition, aiming to clarify if the alula is deflected voluntarily by birds or if the deflection is caused by pressure forces, basic experimental results on the influence of the wing aerodynamics on the mechanism of alula deflection at low velocities are presented. Experimental results seem to indicate that the alula is deflected by pressure forces and not voluntarily. Key words: Alula, high lift devices, steady flight, wing load. RESUMEN.—El papel del álula en el vuelo estacionario de las aves. El álula es un dispositivo hipersus- tentador situado en el borde de ataque de las alas de los pájaros que permite que estos animales vuelen a altos ángulos de ataque y bajas velocidades sin que se produzca la entrada en pérdida del ala (el ala deja de sus- tentar si el ángulo de ataque es muy grande).
    [Show full text]
  • A New Feather Type in a Nonavian Theropod and the Early Evolution of Feathers
    A new feather type in a nonavian theropod and the early evolution of feathers Xing Xua,1, Xiaoting Zhengb, and Hailu Youc aLaboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cInstitute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China Edited by David B. Wake, University of California, Berkeley, CA, and approved December 8, 2008 (received for review October 7, 2008) All described feathers in nonavian theropods are composite struc- tures formed by multiple filaments. They closely resemble rela- tively advanced stages predicted by developmental models of the origin of feathers, but not the earliest stage. Here, we report a feather type in two specimens of the basal therizinosaur Beipiao- saurus, in which each individual feather is represented by a single broad filament. This morphotype is congruent with the stage I morphology predicted by developmental models, and all major predicted morphotypes have now been documented in the fossil record. This congruence between the full range of paleontological and developmental data strongly supports the hypothesis that feathers evolved and initially diversified in nonavian theropods before the origin of birds and the evolution of flight. Early Cretaceous ͉ filament ͉ display eathers have been documented in most nonavian coeluro- Fsaurian theropod groups, based mainly on recent discoveries of exceptionally well-preserved specimens from the Early Cre- taceous Jehol Group of western Liaoning, China (1–4). The feathers present in these specimens can be categorized into several morphotypes, but all of them are composite structures formed by multiple slender filaments (5–7).
    [Show full text]
  • Birds of a Feather — Coping With
    THE SEA GRANT and GOMRI BIRDS OF A FEATHER — COPING WITH OIL PARTNERSHIP Emily Maung-Douglass, Larissa Graham, Christine Hale, Stephen Sempier, The mission of Sea Grant is Tara Skelton, LaDon Swann, and Monica Wilson to enhance the practical use and conservation of coastal, marine, and Great Lakes resources in order to create Although birds can travel great distances, they cannot necessarily a sustainable economy and escape oil exposure from natural oil seeps or oil spills caused by humans. environment. There are 33 Scientists and natural resource managers are still trying to understand university–based Sea Grant programs throughout the the many ways oil exposure can affect birds. coastal U.S. These programs are primarily supported by the National Oceanic and Atmospheric Administration and the states in which the programs are located. In the immediate aftermath of the Deepwater Horizon spill, BP committed $500 million over a 10–year period to create the Gulf of Mexico Research Initiative, or GoMRI. It is an independent research program that studies the effect of hydrocarbon releases on the environment and public health, as well as develops improved spill mitigation, oil detection, characterization, and remediation technologies. GoMRI is led by an independent and academic 20–member research board. The Sea Grant oil spill science outreach team identifies the best available science from Though an entirely land-based species of bird, seaside sparrows showed signs of oil in their projects funded by GoMRI and others, and only shares peer- diet after Deepwater Horizon oil spill. (Andrea Bonisoli Alquati) reviewed research results. Oil can have a variety of short- and long- individual birds to die, but it can also term effects on birds, including damage lower overall population numbers by to plumage, poor health, delayed reducing breeding, hatching, nesting 1 Texas • Louisiana • Florida migration, and death.
    [Show full text]