Nano-Scale Memory Devices: Space-Time-Energy Trade-offs

Ralph Cavin and Victor Zhirnov Semiconductor Research Corporation

1 Main Points

 Many candidates for beyond-CMOS nano-electronics have been proposed for memory, but no clear successor has been identified.  MthdlMethodology for sys tem-lllevel ana lilysis

 How is maximum performance related to device physics?

2 Three integrated components of a Memory Device:

 1) ‘Storage node’

 ppyhysics of memor y o peration  2) ‘Sensor’ which reads the state

 e.g.  3) ‘Selector’ which allows a in an array to be addressed  transistor  diode

 All three components impact scaling limits for all memory didevices

3 Space-Time-Energy Metrics

 Essential parameters of the memory element are:  cell size/density,  retention time, access time/speed  operating voltage/energy.  None of known memory technologies, perform well across all of these parameters  At the most basic level, for an arbitrary memory element, there is interdependence between operational voltage, the spppeed of operation and the retention time.

 More generally, cell dimensions are also part of the trade-off, hence the Space-Time-Energy compromise

4 Space-Action Principle for Memory

EnergytimeVolume  min

E t V  min E t  L  min

E t  Nat  min

The Least Action principle is a fundamental principle in Physics

E t  min (h) Plank’s constant h=6.62x10-34 Js 5 Three Major Memory State Variables

Charge (‘moving ’)

 e.g. DRAM, Flash

 Electron Spin (‘moving spins’)

 (STT-) MRAM

 Massive particle(s) (‘moving atoms’)  e.g. ReRAM, PCM, Nanomechanical, etc.

6 Charge-based Memories

DRAM/SRAM A e- B Floating Gate Memory SONOS

Control

Requirements: 1) Efficient charge injection during programming 2) Suppresse d bac k-flfhflow of charge it/din store/read mo des 3) Efficient erase 4) Min . charge/bit: q=e=1. 6x10-19 Q

7 Barrier-less Ohmic Transport: The most efficient injection, but…

Write I AB ~ V … difficult retention Store

Eb

Charge-based memory is a two-barrier system

Example: DRAM

8 Essential Physics The operation of charge-based memory devices is governed by these basic equations, which put fundamental constraints on device and circuit parameters. Heisenberg Relations Bol tzmann prob abili ty of thermal excitation xp   E Et    exp( b )  kBT

E  2 2m  b I  I exp (a E ) I  I0 exp( ) 0  b  kBT    9 What is the minimum barrier height for the charge -based memory?

Thermionic leakage q  CV current (ideal case): Store 25fF×050.5V×=3.75 fCl

 Eb  Eb Jth  Jth0 exp   kT 

Eb, eV Max. retention Standard DRAM 0.7 4 ms requirement: 64 ms 0.76 24 ms High-barrier are needed for 080.8 77 ms Non-volatile memory 1.4 1 month 1.57 12 years E Min. barrier bmin hihtfheight for NVM

Problem: In Si devices Ebmax

CV Selector N  el e

2 dC CV E E  b,C Sensor 2 E CV b,tr t  a I 25fF

Storage Node

 0 88pF Cint  ~ 5 L 1cm Nel~10 a=10 nm

-15 3 Vcap=6x10 cm

-14 E~10 J tw~1 ns 11 DRAM summary

a=10 nm 5 -14 Nel~10 E10E~10 J

-15 3 Vcap=6x10 cm

t~1 ns

EtV~10-9 J-ns-nm3

DRAM inherent issues: Selector -Low barrier height-Volatility

Sensor - Remote sensing – Large size of Storage node

12 Flash: Local Sensing of Memory State

Storage Node

Selector V Sensor

13 Charge injection problem in high- barrier systems High-barriers are needed for Non-volatile memory

BUT: Barrier formed by an insulating material (large Eb) cannot be suppressed) – charge transport in the presence of barriers: Non-ohmic charge transport

Hot-electron injection

Tunneling

14 Floating gate memory: WRITE and STORE modes ‘0’ FET Control channel gate Floating gate q CV tw   WRITE I I

V q CV STORE tret   leakage I I

V 15 We need to create an asymmetry in charge transport

through the gate to maximize the Iwrite/Iret ratio

Floating gate cell: Write – triangle barrier Retention – trapezoidal barrier

V

3 2 1 1  a  Eb  t ~ ~ expC   tret ~ ~ expC2 a  Eb   1  T TF N  V  DT The asyyymmetry in char ge trans port between WRITE and STORE modes is achieved through different shape of barrier (triangle vs. trapezoidal) 16 Retention Analysis: Minimum Barrier Height and Width: Ne ts  ~10 y I s  Eb  Ith  Ith0 exp   kT  Ebmin=1. 8 eV (400K)

e2 2mE  2 2m eV  I  A b V exp a  E   tun 2  b  h a   2 

amin=6.9 nm

17 Floating Gate Cell Retention and WRITE characteristics Retention: direct tunneling Write: F-N tunneling: E VF-N>Eb Vstored

VF-N

VW a V 2 V 2E The retention time strongly W min   F N  b

depends on thickness Si/SiO2: Eb=3.1 V, VWSiO2>6.2 V

For lower WRITE voltage Eb should Ideal case be decreased:

Ebmin=1.8 eV Vmin>4 V BiBarrier Eb VRV Re t a tRt Re t BiBarrier Eb VWRV WR a tWRt WR Si/SiO2 3.1 eV 2 V 4 nm 4.35 min Si/SiO2 3.1 eV 6.8 V 5.4 nm 1h Si/SiO2 3.1 eV 2V 5.4 nm 20 y Si/SiO2 3.1 eV 12 V 5.4 nm 30ms Min. barrier 1.8 eV 0.9 V 6.9 nm 11 y Min. barrier 1.5 eV 6 V 6.9 nm 40ms 18 Voltage-Time Dilemma

 For an arbitrary electron-charge based memory element, there is interdepppg,endence between operational voltage, the speed of operation and the retention time.

 Specifically, the nonvolatile electron-based memory, suffers from the “barrier” issue:  High barriers needed for long retention do not allow fast charge injection  It is difficult (impossible?) to match their speed and voltages to logic

19 Flash Scaling limits due to ‘Sensor’

Selector

Selector Sensor

Storage Node

20 Semiconductor Physics sets limits on barrier quality

p

W W n n

Depletion width N A  N D W  2 0Vbi N A N D a=2W N C  N V W min  2 0 E g ~ 10 nm N C N V a<2W

19 -3 NC – effective density of states in the conduction band, for Si NC=2.8x10 cm 19 -3 NV - effective density of states in the valence band, for Si NV=1.4x10 cm Eg – the band gap, for Si Eg=1.12 eV 21 Flash in the limits of scaling

-18 3 V=2x10 cm Electrostatics requires gate Storage Node oxide scaling to maintain FET c harge sens itiv ity ~ 1 0

nm Selector Sensor ~6nm

a~Wmin

Nel~10

~20nm Flash FET Tox=const =5.4 nm – degradation of sensitivity and control 22 Flash Summary

a=10 nm -15 Nel~10 E10E~10 J t~1 s=1000 ns V=2000 nm3

EtV~10-9 J-ns-nm3

23 Conclusion on ultimate charge- based memories

 All charge-based memories suffer from the “barrier” issue:  High barriers needed for long retention do not allow fast charge injection  It i s diffi cu lt (imposs ible ?) to ma tc h the ir spee d an d vo ltages to logic

 Voltage-Time Dilemma

Non-charge-bdNVM?based NVMs?

24 Emerging Memory Devices

The Choice of Information Carrier Desired: ‘Benchmark’ memory cell

Driver: Cell Scaling Cell size, l <10 nm

8 Store time, ts >10 s ‐7 Write time, tw <10 s ‐7 Read time, tr <10 s

Read Voltage, Vr ~1 V Min. sense amplifier requitirement ‐6 (R. Waser et al.) Read current, Ir ~10 A 6 2 Read current density, Jr >10 A/cm Driver: Sensing 26 Spin torque transfer MRAM Magnetic storage node (Moving spins): Energy Limit

 E   KV   b  ftr  f0 exp   f0 exp   kBT   kBT  9 10 -1 (f0~10 -10 c ) 1  KV  tstore  exp  f 0  kBT 

tstore>10 y

the anisotropy constant of a material

Eb = KV > 36kBT~1.25 eV volume

D. Weller and A. Moser, “Thermal Effect Limits in Ultrahigh-Density Magnetic Recording”, IEEE Trans. Magn. 36 (1999) 4423 28 Magnetic storage node (Moving spins): Size Limit

Eb = KV > 36kBT~1.25 eV the anisotropy 3 constant of a material K~0.1-1 J/cm volume V=L2T~2x10 -19 cm3

Thin film: T=2nm L~11nm

4 Nat~10

5 Nspin~10

29 FET selector is biggest part of STT-MRAM in the limits of scaling

6 x 2 nm =12 nm Storag V=1500 nm3 e Node

11 nm

Selector

J-G. Zhu, Proc. IEEE 96 (2008) 1786

30 STT-RAM summary

3 V=1500 nm tw~1 ns

E~107 A/cm2  11nm2 1V 1 ns~10-14 J

EtV~10-11 J-ns-nm3

31 Scaled ReRAM Moving atoms: ‘Atomic Relay’

Atomic-scale switch, which opens or closes an electrical circuit byyg the controlled reconfiguration of silver atoms within an atomic-scale junction. Such ‘atomic relays’ operate at room temperature and the only movable part of the switch are the contacting atoms, which open and close a nm-scale gap.

Small ((1~1nm) nm)

Fast (~1 ns) - projection

Low voltagg(e (<1V )

Nature 433, 47-50 (6 January 2005) Quanti zed cond uctance atomic s witch K. Terabe, T. Hasegawa, T. Nakayama and M. Aono

33 Two-sided barrier

a=100 nm

Au Au

0=5.1 eV 0=5.1 eV

Both electrodes influence the potential of the electron within the electrode separation. For small gaps, the near electrode electric fields will influ ence the energy barrier Interface-to-interface interaction

34 Two-side barrier

a=100 nm

Au Au

0=5.1 eV 0=5.1 eV

35 Two-side barrier

a=50 nm

Au Au

0=5.1 eV 0=5.1 eV

36 Two-side barrier

a=20 nm

Au Au

0=5.1 eV 0=5.1 eV

37 Two-side barrier

a=10 nm

Au Au

0=5.1 eV 0=5.1 eV

38 Two-side barrier

a=5 nm

Au Au

0=5.1 eV 0=5.1 eV

39 Two-side barrier

a=2 nm

Au Au

0=5.1 eV 0=5.1 eV

40 Two-side barrier

a=2 nm

V=0

41 Two-side barrier

a=1 nm

V=0

42 Two-side barrier

a=0.5 nm

V=0

43 Two-side barrier

a=0.5 nm

V=1 volt

44 Two-side barrier

a=2 nm

V=2 volt

45 Ultimate ReRAM: 1-atom gap

1  a ~ n 3  0.257nm Au

A B V=0

Eb=0.64 eV

dt=0.09 nm

dt<

1  a ~ n 3  0.257nm Au

ON/OFF~1.61

A B V=0.5 V

Eb=0.38 eV

dt=0.075 nm

dt<

1  a ~ 2n 3  0.514nm Au

ON/OFF~476

A B V=0.5 V

Eb=2.63 eV

dt=0.37 nm

dt

1  a ~ 3n 3 ~ 1nm Au

Eb (energy barrier for diffusion) Energy 050.5-1eV1 eV

 E  m  E   b  b ttr  t0 exp   l0 exp  ~ 2s  kBT  kBT  kBT  Ultimate Atomic Relay: 4-atom gap

1  a ~ 4n 3 ~ 1nm Au

Eb (bifdiffi)(energy barrier for diffusion) Energy 0.5-1 eV

3 3  E  m  E   b  b ttr  t0 exp   l0 exp  10y  kBT  kBT  kBT  (Eb=0.5 eV, n>5) Ultimate ReRAM: A summary

a 1nm

V=1nm3

Nat~100 (64)

-17 E~Nat*1eV~10 J t~1 ns

EtV~10-17 J-ns-nm3 Summary Main constraints dtdue to sensor Space- Action, Biggest 3 t , ns Ncarriers V, nm Ew, J w J-ns-nm3 component

DRAM 105 105 10-14 1 ns ~10-9 Storage Node

Flash 10 103 10-15 103 ns ~10-9 Sensor FET

STT-RAM 105 103 10-14 1 ns ~10-11 Selector FET

RRAMReRAM 100 1 10-17 1 ns ~10-17 SlSelec tor FET Constraints by sensor notiddt considered

52 Back-Up slides FET or Diode selector is biggest part of ReRAM in the limits of scaling

54 Scaling Limits of Diodes

0.60 0.50 Me Me 0.40 Si

0.30

0.20

0.10

0.00 0 5 10 15 20

2 0Vbi Nd≤NC W  ~ 10 nm N D

pn-diode  Esaki tunnel diode NdNC Schottky diode  Ohmic contact

19 -3 NC – effective density of states in the conduction band, for Si NC=2.8x10 cm

55 Space-Action: Flash

1.00E+05

1.00E+04 L)/h N=1 1.00E+03

(E*t* N=10 N=100

1.00E+02 1.5 2 2.5 3 3.5

Eb, eV

56