Txu-Oclc-2601092.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Txu-Oclc-2601092.Pdf BUREAU OF ECONOMIC GEOLOGY The University of Texas Austin, Texas 78712 l'eter T. Flawn, Director Report of Investigations—No. 51 Relation of Ogallala Formation to the Southern High Plains in Texas By John C. Frye and A. Byron Leonard March 1964 Contents Page Abstract 5 Introduction 5 Regional physiography 8 The Ogallala Formation and the High Plains surface 10 Fossil seeds of the Ogallala Formation 11 Pleistocene dissection of the High Plains margin 14 Abandoned Panther Valley 15 Lake Lomax 17 Fossil molluscan assemblages 18 Conclusions 20 References 20 Index . 24 - Illustrations Figures Page Index of central-western Texas location 1. map showing of profiles and fossil localities . 7 2. Regional profiles in central-western Texas 9 abandoned Panther the 3. Profiles across Lake Lomax and Valley in of and Glasscock counties - 16 Big Spring area Howard, Martin, Plate I. Field views 22 Relation of Ogallala Formation to the Southern High Plains in Texas JOHN C. FRYE 1 and A. BYRON LEONARD^ ABSTRACT Studies along the southern and south- Pliocene and Pleistocene valley is de- scribed of Edwards Plateau eastern borders of the High Plains have across a prong the of outliers of south of and the drainage of demonstrated presence Big Spring, Lake Lomax is de- fossiliferous Ogallala Formation in Borden the late Pleistocene in and Scurry counties and have documented termined to have occurred pre-Bradyan Wisconsinan lime. A the occurrence of Pliocene deposition as far meaningful physio- be- The limit of cannot be drawn southeast as Sterling County. graphic boundary southern limits of the characteristic Ash Hollow seed floras is ex- tween the High Plains and the Edwards Plateau. tended to the southeast. An abandoned INTRODUCTION the limits of the Plains are less firmly The High Plains surface is the dominant High here the surface of the physiographic feature of central-western fixed because upper Formation does stand as the and northwestern Texas (Sellards, Adkins, Ogallala not above the It is layer of a plateau adja- and Plummer, 1933, fig. 3). a high capping the cent terrain, nor does the truncated edge of plateau, sloping generally toward terminated the Formation a prominent southeast. This plateau is Ogallala cap In fact, in the region north of toward the east by a striking escarpment, escarpment. Pecos (Leonard and Frye, 1962) and its western extent is likewise abruptly Valley and of it is indeed diffi- terminated in eastern New Mexico. North- west Sterling City, cult to draw a meaningful line of separa- ward, the High Plains surface is transected Ed- tion between the High Plains and the by the trench of the Canadian River valley, wards Plateau subdivi- but the upland surface extends through the as physiographic the Oklahoma sions based on topographic expression (PL Texas panhandle, across Kansas into I, B) and, as physiographic units, they panhandle and western western the be even ar- Nebraska. cannot differentiated, by of the feather edge of Since the early work by Johnson (1901; bitrary acceptance the Formation as the dividing 1902) and Darton (1905; 1920), the High Ogallala feature has been line. Plains as a physiographic southeast from the coextensive with the Furthermore, High regarded as virtually Borden and and the Plains particularly in deposits of the Ogallala Formation, scarp, there outliers of the west and Scurry counties, are Ogal- Plains are terminated to east, forma- lala that coincide with the projected gra- north at the truncated limits of this dient of the High Plains surface; these tion. To the south and southeast, however, the if such areas should be pose question Geological Survey, Urbana. 1 Chief, Illinois Stale as outliers of the High Plains, of Kansas, Lawrence. regarded 2 Department of Zoology, University 6 Report of — Investigations No. 51 even within though the Osage Plains re- and southeastern gion. An additional limits. complicating factor is Il is the the of this presence of extensive Pleistocene purpose report to de- lake s< rihe the basins within the regional relations of the southern area of the Ogallala extremities of the Texas formation (Evans and High Plains, to list Meade, 1945) and fossd within seeds from the the that has Ogallala Formation in region generally been classed some of the outliers and from as near its High Plains. Therefore this southern and to limit, describe the exten- physiographic feature, so clearly recog- late sive Pleistocene lake nizable farther north in that existed Texas and in west- in southwestern ern Kansas Howard and (Frye and adjacent Leonard, 1952) counties. becomes difficult to define at its southern Relation of Ogallala Formation. Southern High Plains 7 locations of Figure 1. Map of central-western Texas showing cross sections on figures 2 and 3 and locations of Pleistocene fossil snail faunas and Ogallala fossil seed floras used in this report. REGIONAL PHYSIOGRAPHY In central-western Texas the Plains High a of little slope a more or loss than 2 feet is an extensive table-land on of the top per mile from SW and modified to NE, therefore, if upper surface of the late Tertiary we ignore structural plain of coalescent subsequent movement, alluviation, defined by the suggested initial the slope is from lop of the Ogallala Formation. slightly Pleisto- west of NW to slightly east of SE and is at cene veneers of sheet Hood eolian or de- a rate of 10 feet approximately per mile. posits occur on large parts of the The surface; character of the sediments in the in upper some areas the upland plain is indented part of the Ogallala Formation by Pleistocene lake suggests basins; and locally the that the gradients on which they were High Plains are notched by Pleistocene and less deposited were than this, and the flora be cent canyons. However, the surface and pre- invertebrate fauna of the formation serves in the initial general depositional that suggest during most of the time of its slope of the Ogallala sediments as it has the deposition region was at a lower alti- been modified by subsequent regional tilt- tude and received more precipitation than ing, and, perhaps, very gentle it warping. now does and The (Frye Leonard, 1957; general character of this surface is 1959). However, below the surface shown by the upper generalized profiles, located of the Ogallala sediments there developed m figure 1 and in presented figure 2. The an extensive thick zone of soil caliche that present of the gradient surface is about 5 has been modified several feet by cycles of per mile from north to south, 6 to 8 brecciation and recementation feet mile from (Swineford, per west to east, and 8 9 to Leonard, and Frye, 1958) and that feet mile from now per NW to SE. At right serves as a resistant capping layer. Inter- angles to the direction of maximum gra- spersed the throughout upper part of the dient shown in figure 2, the profiles show lormation are other zones, wherein the Figrue 2. Generalized schematic physigraphic profiles in central-western Texas (plotted from 1:250,000 Arm Map Servie Sheets). A. From west-central Hale County south to north-central Midland County, and then southest along the western limit of the Ewards Plateau to the Pecos River in southwest Crane County, show- ing the southern feather edge of the High Plains, the Cretaceous bedrock divide, and the Pecos Valley. B. West-east from southwestern New Mexico to western Nolan County, showing the eastern com- ponent of High Plains slope. Lake Lomax basin, and the Osage Plains standing above the pro- jection of the High Plains surface. C. Southwest from Farwell, at the New Mexico line in Parmer County, to northwestern Nolan County, showing the Haigh Plains (Ogallala Formation) slope along its maximum gradient, its eastern escarpment in Garza County, the prominent outliers in northeastern Borden an dnorht- western Scuŕy counties, the Pleistocene veneered upland in the snyder area, and the bedrock surface of the Osage Plains rising above the projected slope of the High Plains in northwestern Nolan County. D. Southwestward from the New Mexico line in Cochran County to central Howard County, and thence southward to central Reagan County. showing the regional slope of the High Plains sur- face, and the position of the Edwards Plateau (Cretaceous) standing above the projected slope of the high Plains surface. E. Northeastward formt he New Mexico line in Andrews County to central Motley Country showing the High Plains surface, at right angles to the direction of its major regional slope, and the High Plains escarpment at the Floyd-Montley Country line. Relation of Ogallala Formation, Southern High Plains 9 sediments are cemented with of the limestones of Cretaceous irregularly ception age calcium carbonate and locally silica, that (Fredericksburg). Therefore, it is in the the help to give Ogallala Formation the region where the Ogallala pinches out resistance greatest to erosion of any of the against the resistant limestone, or feathers pertinent stratigraphic units, with the ex- out onto gently sloping surfaces developed 10 Report of Investigations—No. 51 on these that limestones, the limits of the oepted limits of the Hi Plains. High Plains are indistinct. Where upland 1 he major of rock that has surfaces underlain body long by limestones of the keen considered an isolated outlier of the Fredericksburg Group stand distinctly Ogallala Formation above the (Sellards, Adkins, and surface of the Ogallala Forma- Plummer, 1933) is in the NW to SE elon- tion, a differentiation between the Edwards gate belt shown on the of Plateau and the geologic map High Plains is clear. lexas as from the lh 0 extending northeastern e gallala Formation and the r High corner of Borden County to south of Roscoe ! lams —It is surface.
Recommended publications
  • Baylor Geological Studies
    BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D.
    [Show full text]
  • A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion
    A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion June 2004 © The Nature Conservancy This document may be cited as follows: The Nature Conservancy. 2004. A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion. Edwards Plateau Ecoregional Planning Team, The Nature Conservancy, San Antonio, TX, USA. Acknowledgements Jasper, Dean Keddy-Hector, Jean Krejca, Clifton Ladd, Glen Longley, Dorothy Mattiza, Terry The results presented in this report would not have Maxwell, Pat McNeal, Bob O'Kennon, George been possible without the encouragement and Ozuna, Jackie Poole, Paula Power, Andy Price, assistance of many individuals and organizations. James Reddell, David Riskind, Chuck Sexton, Cliff Most of the day-to-day work in completing this Shackelford, Geary Shindel, Alisa Shull, Jason assessment was done by Jim Bergan, Bill Carr, David Singhurst, Jack Stanford, Sue Tracy, Paul Turner, O. Certain, Amalie Couvillion, Lee Elliott, Aliya William Van Auken, George Veni, and David Wolfe. Ercelawn, Mark Gallyoun, Steve Gilbert, Russell We apologize for any inadvertent omissions. McDowell, Wayne Ostlie, and Ryan Smith. Finally, essential external funding for this work This project also benefited significantly from the came from the Department of Defense and the U. S. involvement of several current and former Nature Army Corps of Engineers through the Legacy Grant Conservancy staff including: Craig Groves, Greg program. Without this financial support, many of the Lowe, Robert Potts, and Jim Sulentich. Thanks for critical steps in the planning process might not have the push and encouragement. Our understanding of ever been completed. Thank you. the conservation issues important to the Edwards Plateau was greatly improved through the knowledge and experiences shared by many Conservancy staff including Angela Anders, Gary Amaon, Paul Barwick, Paul Cavanagh, Dave Mehlman, Laura Sanchez, Dan Snodgrass, Steve Jester, Bea Harrison, Jim Harrison, and Nurani Hogue.
    [Show full text]
  • Reconaissance of the Chemical Quality of Surface Waters of The
    ( TEXAS WATER DEVELOPMENT BOARD REPORT 129 RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RED RIVER BASIN, TEXAS By Donald K. Leifeste, James F. Blakey. and Leon S. Hughes Prepared by the U.S GeologH;.1 Su..... ey in c:oope,-"on wIth the TellllS Waler Development Board M~ 1971 TEXAS WATER DEVELOPMENT BOARD W. E. Tinsley, Chairman Marvin Shurbet. Vice Chairman Robert B. Gilmore John H. McCoy Milton T. Potts earl Illig Harry P. Burleigh. EXl!QJtive Director ( Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the n«:essity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized. ( ( Published and distributed bV the Texas Water Development Board ( Post Office Box 13087 Austin, Texas 78711 ( ( ii i :;.oC , ~no <.. ... qa 1)0 lal TABLE OF CONTENTS Pogo ABSTRACT .... _.... INTRODUCTION . 3 RED RIVER DRAINAGE BASIN 3 General Description 3 Population and Municipalities 5 Agricultural and Industrial Development ...............•... 9 Development of Surface·Water Resources . 9 CHEMICAL QUALITY OF THE WATER 9 Chemical·Quality Records ....................••............••......•.. 9 Streamflow Records . 10 Environmental Factors and Their Effects on the Chemical Quality of the Water ...............•...........................•. 10 Geology ..................••.••..••.••..••••...•..•....•••..•...•. 10 Streamflow . 12 Actillities of Man ., 12 Relation of Quality of Water to Use 17 Domestic Use 17 Industrial Use 19 Irrigation .. 19 Geographic Variations In Water Quality ............•.................... 19 Dissolved Solids ... 21 Chloride . 22 Hardness ...........••.••..•••••..•••••..•••••.••••••..•••••.•••.. _ 22 Other Constituents .......•.........•.••••.....•......•......•...••.•. 22 Water Quality in Reservoirs 22 Buffalo Lake . 22 iii TABLE OF CONTENTS IConl'd.) p,.
    [Show full text]
  • Flora of North Central Texas Flora of North Central Texas
    SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D.
    [Show full text]
  • Report 360 Aquifers of the Edwards Plateau Chapter 2
    Chapter 2 Conceptual Model for the Edwards–Trinity (Plateau) Aquifer System, Texas Roberto Anaya1 Introduction The passage of Senate Bill 1 in 1997 established a renewed public interest in the State’s water resources not experienced since the drought of the 1950s. Senate Bill 1 of 1999 and Senate Bill 2 of 2001 provided state funding to initiate the development of groundwater availability models for all of the major and minor aquifers of Texas. The development and management of Groundwater Availability Models (GAMs) has been tasked to the Texas Water Development Board (TWDB) to provide reliable and timely information on the State’s groundwater resources. TWDB staff is currently developing a GAM for the Edwards–Trinity (Plateau) aquifer. An essential task in the design of a numerical groundwater flow model is the development of a conceptual model. The conceptual model is a generalized description of the aquifer system that defines boundaries, hydrogeologic parameters, and hydrologic stress variables. The conceptual model helps to compile and organize field data and to simplify the real-world aquifer flow system into a graphical or diagrammatical representation while retaining the complexity needed to adequately reproduce the system behavior (Anderson and Woessner, 1992). The first step in the development of a conceptual model is to delineate the study area and form an understanding of its physical landscape with regard to the physiography, climate, and geology. Another early step also involves the research and investigation of previous aquifer studies. Intermediate steps bring together all of the information for establishing the hydrogeologic setting which consists of the hydrostratigraphy, structural geometry, hydraulic properties, water levels and regional groundwater flow, recharge, interactions between surface water and groundwater, well discharge, and water quality.
    [Show full text]
  • Texas Wildlife Third - Fifth
    Texas Wildlife Third - Fifth Life Science TEKS Third Grade: 3.9A, 3.9B, 3.10A, 3.10B, 3.10C Fourth Grade: 4.9A, 4.9B, 4.10A, 4.10C Fifth Grade: 5.9A, 5.9B, 5.9C, 5.9D, 5.10A Vocabulary amphibian, Big Bend Country, bird, carnivore, coastal, desert, eco-region, ecosystem, endangered, fish, forest, Gulf Coast, habitat, herbivore, Hill Country, invertebrate, landforms, mammal, omnivore, Panhandle Plains, Pineywoods, prairie, precipitation, reptile, reptile, soil, South Texas Plains, swamp, vegetation, vertebrate Pre-Show Activity Pre-Show Lesson: Texas Eco-regions (3 day activity) Post this question on the board: “What do you know about the nine eco-regions in Texas?” Materials: Per class: 9 pieces of large chart paper, Per group: Eco-region map, Eco-region chart and Eco-region map answer key (Appendix A-1), a different colored marker, 8 pieces of computer paper, Internet accessibility Procedure: Part 1 1. Groups will get a map of Texas with the nine eco-regions numbered and a list of the names of the regions. They will try to guess which region goes with each area on the map. To guess, they will place the number of the associated region of the map next to the appropriate region name on the chart (see Appendix A-1). HMNS 3-5 Texas Wildlife Page 1 2. Groups will check their guesses with the answer key to see how many they got right. 3. Hang nine separate chart papers, each with one of the following titles, around the room in a carousel-like arrangement: Region One: Coastal Prairies or Gulf Coastal Plain Region Two: West Gulf Coastal Plain or Piney Woods Region Three: Oaks and Prairies or Grand Prairie and Plains Region Four: Osage Plains (Cross Timbers) Region Five: Rolling Plains Region Six: Pecos and Staked Plains or High Plains Region Seven: Edwards Plateau Region Eight: South Texas Brushlands Region Nine: Chihuahuan Desert and Mexican Mountains in Texas or Trans- Pecos 4.
    [Show full text]
  • Tree Fall Gap Dynamics in the Cross Timbers of Oklahoma
    TREE FALL GAP DYNAMICS IN THE CROSS TIMBERS OF OKLAHOMA By LAXMAN KARKI Bachelor of Science in Biology Tribhuvan University Kathmandu, Nepal 1998 Master of Science in Botany Tribhuvan University Kathmandu, Nepal 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2007 TREE FALL GAP DYNAMICS IN THE CROSS TIMBERS OF OKLAHOMA Thesis Approved: Dr. Stephen W. Hallgren Thesis Adviser Dr. Rodney Will Dr. Michael W. Palmer Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEGEMENTS I am grateful to my adviser Dr. Stephen W. Hallgren for his advices, support and encouragement during my study and research. I would like to thank my committee members Dr. Michael W. Palmer and Dr. Rodney Will for their suggestions. I am grateful to Ryan DeSantis, Mauricio Moreno, Ed Lorenzi and Bruce Burton for their help in field data collection. I am grateful to my parents and my wife for their support and encouragement in every step of my life. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION..........................................................................................1 Background................................................................................................1 Purpose of study ........................................................................................3 II. REVIEW OF LITERATURE……………………………………………………..4 Physical Environment ................................................................................4
    [Show full text]
  • SPRING 1971 Bulletin No. 20 CLIFFORD LEON BYRD
    BAYLOR SPRING 1971 Bulletin No. 20 Origin and History of the Gravel of Central Texas CLIFFORDLEO N BYRD thinking is more important than elaborate FRANK CARNEY, PH.D. OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of training geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued pro­ fessional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring objective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN No. 20 Origin and History of the Uvalde Gravel of Central Texas CLIFFORD LEON BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring, 1971 Geological Studies EDITORIAL STAFF Jean M. Spencer, M.S., Editor environmental and medical geology O. T. Hayward, Ph.D., Advisor, Cartographic Editor urban geology and what have you R. L. M.A., Business Manager archeology, geomorphology, vertebrate paleontology James W. Dixon, Jr., Ph.D. stratigraphy, paleontology, structure Walter T. Huang, Ph.D. mineralogy, petrology, metallic minerals Gustavo A. Morales, Ph.D.
    [Show full text]
  • Paleozoic, and It Therefore Seems Most Likely That the Seas in Which These Deposits Were Formed Were Connected with the Missis• Sippi Embayment Through These States
    Paleozoic, and it therefore seems most likely that the seas in which these deposits were formed were connected with the Missis• sippi embayment through these states. PENNSYLVANIAN SYSTEM The entire Pennsylvanian system is well represented in Texas. Rocks of this age are exposed in a great belt extending through north-central Texas from the Red River southward to the Llano uplift, and thence westward and southwestward until concealed by the overlying Permian or Cretaceous. In the Marathon and Soli- tario uplifts, formations of this system again come to the surface. A third region of disconnected exposures is that of the Diablo, Hueco, and Franklin mountains. The formations of these several regions will be separately discussed. Rocks of this system are found underground in north-central Texas west and east of the belt of surface outcrop and also south• west of the Llano uplift. The Pennsylvanian of north-central Texas is connected underground with that of Trans-Pecos Texas and, with the exception of some of the most pronounced highs, underlies much, if not all, of the great Permian basin. The sediments occur under varying facies. In extreme north Texas and the adjacent part of Oklahoma the uppermost part of the Pennsylvanian is of the red bed facies. Southward the red beds grade into normal marine lime• stones and shales. The sandstones and limestones of this system have afforded storage for a very large quantity of oil and gas, which is being produced in north-central Texas. The occurrence of Pennsylvanian in Texas seems to have been first recorded in 1852 by Roemer (1331), who included it under the general term of Carboniferous.
    [Show full text]
  • Stratigraphic Distribution of the Ostracoda of the Conanche (Cretaceous) Series of North Texas
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1974 Stratigraphic Distribution of the Ostracoda of the Conanche (Cretaceous) Series of North Texas. Walter Paul Kessinger Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Kessinger, Walter Paul Jr, "Stratigraphic Distribution of the Ostracoda of the Conanche (Cretaceous) Series of North Texas." (1974). LSU Historical Dissertations and Theses. 2613. https://digitalcommons.lsu.edu/gradschool_disstheses/2613 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided io help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • The Osage Plains (Physiographic Area 33) Partners in Flight Bird Conservation Plan
    Partners in Flight Bird Conservation Plan for The Osage Plains (Physiographic Area 33) Partners in Flight Bird Conservation Plan for The Osage Plains (Physiographic Area 33) Version 1.0 6 October 2000 by Jane Fitzgerald, Bill Busby, Mark Howery, Ron Klataske, Dan Reinking, and David Pashley Please address comments to: Jane Fitzgerald PIF Midwest Regional Coordinator 8816 Manchester, suite 135 Brentwood, MO 63144 314-918-8505 e-mail: [email protected] *********************************************** Front cover illustration from ‘All the Birds of North America’ by Jack Griggs, courtesy of HarperCollins publishers. Table of Contents: Executive Summary: ....................................................1 Preface ...............................................................2 Section 1: The planning unit Background ............................................................3 Conservation issues .....................................................4 General conservation opportunities ..........................................7 Section 2: Avifaunal analysis General characteristics ...................................................8 Priority species .........................................................12 Section 3: Habitats and objectives Grasslands: Ecology and conservation status .........................................19 Bird habitat requirements ...............................................22 Population objectives and habitat strategies .................................28 Evaluation of assumptions - research
    [Show full text]
  • 18. Geologic Terms and Geographic Divisions
    18. Geologic Terms and Geographic Divisions Geologic terms For capitalization, compounding, and use of quotations in geologic terms, copy is to be followed. Geologic terms quoted verbatim from published ma- terial should be left as the original author used them; however, it should be made clear that the usage is that of the original author. Formal geologic terms are capitalized: Proterozoic Eon, Cambrian Period. Structural terms such as arch, anticline, or uplift are capitalized when pre- ceded by a name: Cincinnati Arch, Cedar Creek Anticline, Ozark Uplift . See Chapter 4 geographic terms for more information. Divisions of Geologic Time [Most recent to oldest] Eon Era Period Phanerozoic ................ Cenozoic ............................ Quarternary. Tertiary (Neogene, Paleogene). Mesozoic........................... Cretaceous. Jurassic. Triassic. Paleozoic .......................... Permian. Carboniferous (Pennsylvanian, Mississippian). Devonian. Silurian. Ordovician. Cambrian. Proterozoic ................. Neoproterozoic ............... Ediacaran. Cryogenian. Tonian. Mesoproterozoic ............. Stenian. Ectasian. Calymmian. Paleoproterozoic ............. Statherian. Orosirian. Rhyacian. Siderian. Archean ....................... Neoarchean. Mesoarchean. Paleoarchean. Eoarchean. Hadean. Source: Information courtesy of the U.S. Geological Survey; for graphic see http://pubs.usgs.gov/fs/2007/3015/ fs2007-3015.pdf. 343 cchapter18.inddhapter18.indd 334343 111/13/081/13/08 3:19:233:19:23 PPMM 344 Chapter 18 Physiographic regions Physiographic
    [Show full text]