Reconaissance of the Chemical Quality of Surface Waters of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baylor Geological Studies
BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D. -
Txu-Oclc-2601092.Pdf
BUREAU OF ECONOMIC GEOLOGY The University of Texas Austin, Texas 78712 l'eter T. Flawn, Director Report of Investigations—No. 51 Relation of Ogallala Formation to the Southern High Plains in Texas By John C. Frye and A. Byron Leonard March 1964 Contents Page Abstract 5 Introduction 5 Regional physiography 8 The Ogallala Formation and the High Plains surface 10 Fossil seeds of the Ogallala Formation 11 Pleistocene dissection of the High Plains margin 14 Abandoned Panther Valley 15 Lake Lomax 17 Fossil molluscan assemblages 18 Conclusions 20 References 20 Index . 24 - Illustrations Figures Page Index of central-western Texas location 1. map showing of profiles and fossil localities . 7 2. Regional profiles in central-western Texas 9 abandoned Panther the 3. Profiles across Lake Lomax and Valley in of and Glasscock counties - 16 Big Spring area Howard, Martin, Plate I. Field views 22 Relation of Ogallala Formation to the Southern High Plains in Texas JOHN C. FRYE 1 and A. BYRON LEONARD^ ABSTRACT Studies along the southern and south- Pliocene and Pleistocene valley is de- scribed of Edwards Plateau eastern borders of the High Plains have across a prong the of outliers of south of and the drainage of demonstrated presence Big Spring, Lake Lomax is de- fossiliferous Ogallala Formation in Borden the late Pleistocene in and Scurry counties and have documented termined to have occurred pre-Bradyan Wisconsinan lime. A the occurrence of Pliocene deposition as far meaningful physio- be- The limit of cannot be drawn southeast as Sterling County. graphic boundary southern limits of the characteristic Ash Hollow seed floras is ex- tween the High Plains and the Edwards Plateau. -
[Short Report Title]
Regional Water Plan – Panhandle Water Planning Area VOLUME I January, 2000 Prepared for the Panhandle Water Planning Group through a contract with the Panhandle Regional Water Plan Regional Planning Panhandle Water Planning Area Commission Amarillo, Texas PPC99134 Prepared by: Freese and Nichols, Inc. 4055 International Plaza Suite 200 Fort Worth, TX 76109 817/735-7300 The Texas Agricultural Experiment Station The Texas Agricultural Extension Service USDA Natural Resource Conservation Service Bureau of Economic Geology TABLE OF CONTENTS VOLUME I Chapter No. Page No. EXECUTIVE SUMMARY E-1 1.0 SENATE BILL 1 1-1 1.1 REGIONAL WATER PLANNING AREA 1-3 1.1.1 Population 1-4 1.1.2 Economic Activities 1-8 1.1.3 Climate 1-9 1.2 Major Water Providers 1-11 1.3 Sources of Water 1-12 1.3.1 Groundwater 1-12 1.3.2 Surface Water 1-20 1.4 Current Water Users and Demand Centers 1-25 1.4.1 Municipal Use 1-25 1.4.2 Industrial Use 1-26 1.4.3 Agricultural Use 1-28 1.5 Natural Resources 1-32 1.5.1 Natural Region 1-32 1.5.2 Regional Vegetation 1-34 1.5.3 Regional Geology 1-37 1.5.4 Mineral Resources 1-37 1.5.5 Soils 1-39 1.5.6 Wetlands 1-41 1.5.7 Aquatic Resources 1-42 1.5.8 Wildlife Resources 1-43 1.6 Threats and Constraints to Water Supply 1-44 1.7 Existing Programs and Goals 1-47 1.7.1 Federal Programs 1-47 1.7.2 Interstate Programs 1-48 1.7.3 State Programs 1-49 1.7.4 Local Programs 1-51 1.7.5 Other Information 1-52 2.0 CURRENT AND PROJECTED POPULATION AND WATER DEMAND FOR THE REGION 2-1 2.1 Population 2-3 2.2 Historical Water Use and Projected Water Demand 2-6 2.3 Major Water Providers 2-16 3.0 EVALUATION OF ADEQUACY OF CURRENT WATER SUPPLIES 3-1 3.1 Groundwater Supplies 3-2 3.1.1 Major Aquifers 3-5 3.1.2 Minor Aquifers 3-7 3.2 Surface Water Supplies 3-10 i TABLE OF CONTENTS VOLUME I Chapter No. -
Phase II Contaminants Investigation of Buffalo Lake National Wildlife Refuge, Texas 1993-1994
U.S. Fish and Wildlife Service Region 2 Contaminants Program PHASE II CONTAMINANTS INVESTIGATION OF BUFFALO LAKE NATIONAL WILDLIFE REFUGE, TEXAS 1993 - 1994 by Denise L. Baker 1, Joel D. Lusk 2, and Craig M. Giggleman U.S. Fish and Wildlife Service Arlington Ecological Services Field Office 711 Stadium Drive, East, Suite #252 Arlington, Texas 76011 September 1998 PHASE II CONTAMINANTS INVESTIGATION OF BUFFALO LAKE NATIONAL WILDLIFE REFUGE, TEXAS 1993 - 1994 ABSTRACT Buffalo Lake National Wildlife Refuge is located in the Southern High Plains in Randall County, Texas. The lake from which the Refuge received its name has not contained water since the 1980s. In 1987, a Phase I contaminants investigation of the Refuge was conducted by the U.S. Fish and Wildlife Service, Arlington, Texas, Field Office. The results of this investigation indicated that elevated concentrations of nutrients (nitrogen and phosphorus compounds), salts, copper, strontium, and zinc were found in and downstream of cattle feedlot waste retention lagoons; Tierra Blanca Creek, the major lotic contributor of the Refuge, had degraded water quality, primarily attributed to run-off and discharges from cattle feedlots; and that nutrient concentrations retained in soils in the dry reservoir bed in Buffalo Lake National Wildlife Refuge were elevated to the extent that inundation could create unacceptably high nutrient concentrations in the surface water. Consequentially, in 1993, a Phase II contaminants study was initiated at the Refuge by the U.S. Fish and Wildlife Service to evaluate the extent of contamination in stormwater run-off entering the Refuge via Tierra Blanca Creek; to determine the extent of contamination in soils and vegetation within the Refuge; to evaluate the ability of crops grown in the Refuge to reduce soil contaminant concentrations; and to monitor contaminant levels in soils, surface water, and vegetation of moist soil management units constructed in the southern portion of the Refuge. -
A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion
A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion June 2004 © The Nature Conservancy This document may be cited as follows: The Nature Conservancy. 2004. A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion. Edwards Plateau Ecoregional Planning Team, The Nature Conservancy, San Antonio, TX, USA. Acknowledgements Jasper, Dean Keddy-Hector, Jean Krejca, Clifton Ladd, Glen Longley, Dorothy Mattiza, Terry The results presented in this report would not have Maxwell, Pat McNeal, Bob O'Kennon, George been possible without the encouragement and Ozuna, Jackie Poole, Paula Power, Andy Price, assistance of many individuals and organizations. James Reddell, David Riskind, Chuck Sexton, Cliff Most of the day-to-day work in completing this Shackelford, Geary Shindel, Alisa Shull, Jason assessment was done by Jim Bergan, Bill Carr, David Singhurst, Jack Stanford, Sue Tracy, Paul Turner, O. Certain, Amalie Couvillion, Lee Elliott, Aliya William Van Auken, George Veni, and David Wolfe. Ercelawn, Mark Gallyoun, Steve Gilbert, Russell We apologize for any inadvertent omissions. McDowell, Wayne Ostlie, and Ryan Smith. Finally, essential external funding for this work This project also benefited significantly from the came from the Department of Defense and the U. S. involvement of several current and former Nature Army Corps of Engineers through the Legacy Grant Conservancy staff including: Craig Groves, Greg program. Without this financial support, many of the Lowe, Robert Potts, and Jim Sulentich. Thanks for critical steps in the planning process might not have the push and encouragement. Our understanding of ever been completed. Thank you. the conservation issues important to the Edwards Plateau was greatly improved through the knowledge and experiences shared by many Conservancy staff including Angela Anders, Gary Amaon, Paul Barwick, Paul Cavanagh, Dave Mehlman, Laura Sanchez, Dan Snodgrass, Steve Jester, Bea Harrison, Jim Harrison, and Nurani Hogue. -
1978 Election Results Announced Board Appoints General Manager
Published monthly by High Plains Underground Water Conservation District No. 1, 2930 Avenue Q, Lubbock, Texas 79405 Volume 24-No. 1 Publication number 564920, Second Class Postage paid at Lubbock, Texas January, 1978 1978 Election Results Announced The complete but unofficial results HOCKLEY COUNTY of the January 21 election held by the Committeeman-at-large High Plains Underground Water Con J. E. Wade servation District No. 1 revealed that Commissioner's Precinct No. Three voters re-elected three members to the Jack Earl French Board of Directors and voted 16 Coun ty Committeemen into office. LAMB COUNTY Elected to the Board of Directors Commissioner's Precinct No. One were: James P. Mitchell of Wolfforth, Billy J. Langford Selmer H. Schoenrock of Levelland, Commissioner's Precinct No. Four and Malvin A. Jarboe of Floydada. They Edward Fisher will again join A. W. Gober of Farwell LUBBOCK COUNTY and Ray Gerk of Hereford, who are Committeeman-at-large currently beginning the second year of Owen Gilbreath their present two-year terms. Commissioner's Precinct No. Three The only contested race in the 1978 Clifford Hilbers District election was for Director's Precinct One, involving voters in Lub LYNN COUNTY bock, Lynn and Crosby counties. These Commissioner's Precinct No. One returns show that the incumbent, Gary Houchin James Mitchell, defeated former Dis Commissioner's Precinct No. Four trict Manager Frank A. Rayner of Lub Freddie Kieth bock for the Director's seat. Mitchell The official canvassing of the votes was voted into office for his second will be conducted during the regular term by a count of 879 to 168, garner meeting of the Board on February 6, ing approximately 84 percent of the and at this time the Board will conduct ballots. -
Flora of North Central Texas Flora of North Central Texas
SHINNERS & MAHLER’S FLOR A OF NORTH CENTRAL TEXAS GEORGE M. DIGGSIGGS,, JJR.. BBARNEY L. LIPSCOMBIPSCOMB ROBERT J. O’KENNON D VEGETATIONAL AREAS OF TEXAS MODIFIED FROM CHECKLIST OF THE VASCULAR PLANTS OF TEXAS (HATCH ET AL. 1990). NEARLY IDENTICAL MAPS HAVE BEEN USED IN NUMEROUS WORKS ON TEXAS INCLUDING GOULD (1962) AND CORRELL AND JOHNSTON (1970). 1 PINEYWOODS 2 GULF PRAIRIES AND MARSHEs 3 POST OAK SAVANNAH 4 BLACKLAND PRAIRIES 5 CROSS TIMBERS AND PRAIRIES 6 SOUTH TEXAS PLAINS 7 EDWARDS PLATEAU 8 ROLLING PLAINS 9 HIGH PLAINS 10 TRANS-PECOS, MOUNTAINS AND BASINS D VEGETATIONAL AREAS OF NORTH CENTRAL TEXAS D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D D SHINNERS & MAHLER’S ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS Shinners & Mahler’s ILLUSTRATED FLORA OF NORTH CENTRAL TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) BASS FOUNDATION ROBERT J. O’KENNON RUTH ANDERSSON MAY MARY G. PALKO AMON G. CARTER FOUNDATION MARGRET M. RIMMER MIKE AND EVA SANDLIN INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE OTHER CONTRIBUTORS: PEG AND BEN KEITH FRIENDS OF HAGERMAN NAT IONAL WILDLIFE REFUGE SUMMERLEE FOUNDATION JOHN D. -
Buffalo Lake
U.S. Fish & Wildlife Service Buffalo Lake National Wildlife Refuge Welcome: Once buffalo grazed the shortgrass The 7,66^-acre Buffalo Shortgrass Prairie prairies you see today at Buffalo Landmark Lake National Wildlife Refuge in the Texas Panhandle. Once a lake Lake National Wildlife reflected the clouds. The buffalo have vanished. The lake has dried. Refuge is one of more But the shortgrass prairie remains as one of the best in the high plains than 500 refuges grassland ecosystem. throughout the United States managed by the Fish and Wildlife Service. The National Wildlife Refuge System is the only national system of lands dedicated to conserving Umbarger Dam In fact, this prairie is so important and the Past that 175 acres of it carries the designation of National Natural our wildlife heritage Landmark. Over 4,000 acres of grasslands are the best you'll see for people today and anywhere in the area. Most everywhere else, these native grasslands fell to the plow and with for generations yet them their wildlife. Here, you'll still see black-tailed prairie dogs perched to come. on mounds and burrowing owls blinking in broad daylight. The shortgrass prairies spill into marshes, woodlands, riparian habitat, croplands, and water-carved canyon walls that together form 7,664 acres of homes for migratory and year-round wildlife. (Above, top) Double Rainbow over Buffalo Lake; (Above, left) Tiger Swallowtail Butterfly; (Left) Yucca. Photos by Lynn Nymeyer Wildlife: Looking Red-tailed hawks hunt rodents over Wintering The whistles and quacks of visiting in All the Right the grasslands, occasionally joined Waterfowl at waterfowl fill the frosty winter air. -
Report 360 Aquifers of the Edwards Plateau Chapter 2
Chapter 2 Conceptual Model for the Edwards–Trinity (Plateau) Aquifer System, Texas Roberto Anaya1 Introduction The passage of Senate Bill 1 in 1997 established a renewed public interest in the State’s water resources not experienced since the drought of the 1950s. Senate Bill 1 of 1999 and Senate Bill 2 of 2001 provided state funding to initiate the development of groundwater availability models for all of the major and minor aquifers of Texas. The development and management of Groundwater Availability Models (GAMs) has been tasked to the Texas Water Development Board (TWDB) to provide reliable and timely information on the State’s groundwater resources. TWDB staff is currently developing a GAM for the Edwards–Trinity (Plateau) aquifer. An essential task in the design of a numerical groundwater flow model is the development of a conceptual model. The conceptual model is a generalized description of the aquifer system that defines boundaries, hydrogeologic parameters, and hydrologic stress variables. The conceptual model helps to compile and organize field data and to simplify the real-world aquifer flow system into a graphical or diagrammatical representation while retaining the complexity needed to adequately reproduce the system behavior (Anderson and Woessner, 1992). The first step in the development of a conceptual model is to delineate the study area and form an understanding of its physical landscape with regard to the physiography, climate, and geology. Another early step also involves the research and investigation of previous aquifer studies. Intermediate steps bring together all of the information for establishing the hydrogeologic setting which consists of the hydrostratigraphy, structural geometry, hydraulic properties, water levels and regional groundwater flow, recharge, interactions between surface water and groundwater, well discharge, and water quality. -
Texas Wildlife Third - Fifth
Texas Wildlife Third - Fifth Life Science TEKS Third Grade: 3.9A, 3.9B, 3.10A, 3.10B, 3.10C Fourth Grade: 4.9A, 4.9B, 4.10A, 4.10C Fifth Grade: 5.9A, 5.9B, 5.9C, 5.9D, 5.10A Vocabulary amphibian, Big Bend Country, bird, carnivore, coastal, desert, eco-region, ecosystem, endangered, fish, forest, Gulf Coast, habitat, herbivore, Hill Country, invertebrate, landforms, mammal, omnivore, Panhandle Plains, Pineywoods, prairie, precipitation, reptile, reptile, soil, South Texas Plains, swamp, vegetation, vertebrate Pre-Show Activity Pre-Show Lesson: Texas Eco-regions (3 day activity) Post this question on the board: “What do you know about the nine eco-regions in Texas?” Materials: Per class: 9 pieces of large chart paper, Per group: Eco-region map, Eco-region chart and Eco-region map answer key (Appendix A-1), a different colored marker, 8 pieces of computer paper, Internet accessibility Procedure: Part 1 1. Groups will get a map of Texas with the nine eco-regions numbered and a list of the names of the regions. They will try to guess which region goes with each area on the map. To guess, they will place the number of the associated region of the map next to the appropriate region name on the chart (see Appendix A-1). HMNS 3-5 Texas Wildlife Page 1 2. Groups will check their guesses with the answer key to see how many they got right. 3. Hang nine separate chart papers, each with one of the following titles, around the room in a carousel-like arrangement: Region One: Coastal Prairies or Gulf Coastal Plain Region Two: West Gulf Coastal Plain or Piney Woods Region Three: Oaks and Prairies or Grand Prairie and Plains Region Four: Osage Plains (Cross Timbers) Region Five: Rolling Plains Region Six: Pecos and Staked Plains or High Plains Region Seven: Edwards Plateau Region Eight: South Texas Brushlands Region Nine: Chihuahuan Desert and Mexican Mountains in Texas or Trans- Pecos 4. -
DRAFT Environmental Assessment
DRAFT Environmental Assessment White-tailed Deer, Mule Deer, and Feral Hog Youth Hunt Program September 2015 Prepared by Refuge Staff Buffalo Lake National Wildlife Refuge U.S. Department of the Interior Fish and Wildlife Service Umbarger, Texas TABLE OF CONTENTS: 1.0 PURPOSE OF AND NEED FOR PROPOSED ACTION ALTERNATIVE ......................... 1 1.1 Introduction: 1 1.2 Location: 1 1.3 Background: 1 1.4 Purpose and Need for Action: 3 1.5 Decision to be Made: 3 1.6 Regulatory Compliance: 4 1.7 Scoping/Public Involvement and Issues Identified: 6 2.0 ALTERNATIVES .................................................................................................................... 6 2.1 Alternative A- No hunting of deer or feral hogs- Current Management 6 2.2 Alternative B- Open Refuge to limited deer and feral hog hunting in accordance with State regulations and Refuge specific regulations --Proposed Action Alternative): 7 2.3 Alternatives Considered But Dismissed From Detailed Analysis: 8 3.0 AFFECTED ENVIRONMENT ............................................................................................... 9 3.1 Physical Environment: 9 3.1.1 Air Quality: ..................................................................................................................... 9 3.1.2 Soils / Geology: ............................................................................................................ 10 3.1.3 Water Resources and Quality: ...................................................................................... 10 3.2 Biological -
Tree Fall Gap Dynamics in the Cross Timbers of Oklahoma
TREE FALL GAP DYNAMICS IN THE CROSS TIMBERS OF OKLAHOMA By LAXMAN KARKI Bachelor of Science in Biology Tribhuvan University Kathmandu, Nepal 1998 Master of Science in Botany Tribhuvan University Kathmandu, Nepal 2002 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2007 TREE FALL GAP DYNAMICS IN THE CROSS TIMBERS OF OKLAHOMA Thesis Approved: Dr. Stephen W. Hallgren Thesis Adviser Dr. Rodney Will Dr. Michael W. Palmer Dr. A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEGEMENTS I am grateful to my adviser Dr. Stephen W. Hallgren for his advices, support and encouragement during my study and research. I would like to thank my committee members Dr. Michael W. Palmer and Dr. Rodney Will for their suggestions. I am grateful to Ryan DeSantis, Mauricio Moreno, Ed Lorenzi and Bruce Burton for their help in field data collection. I am grateful to my parents and my wife for their support and encouragement in every step of my life. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION..........................................................................................1 Background................................................................................................1 Purpose of study ........................................................................................3 II. REVIEW OF LITERATURE……………………………………………………..4 Physical Environment ................................................................................4