A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion

Total Page:16

File Type:pdf, Size:1020Kb

A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion June 2004 © The Nature Conservancy This document may be cited as follows: The Nature Conservancy. 2004. A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion. Edwards Plateau Ecoregional Planning Team, The Nature Conservancy, San Antonio, TX, USA. Acknowledgements Jasper, Dean Keddy-Hector, Jean Krejca, Clifton Ladd, Glen Longley, Dorothy Mattiza, Terry The results presented in this report would not have Maxwell, Pat McNeal, Bob O'Kennon, George been possible without the encouragement and Ozuna, Jackie Poole, Paula Power, Andy Price, assistance of many individuals and organizations. James Reddell, David Riskind, Chuck Sexton, Cliff Most of the day-to-day work in completing this Shackelford, Geary Shindel, Alisa Shull, Jason assessment was done by Jim Bergan, Bill Carr, David Singhurst, Jack Stanford, Sue Tracy, Paul Turner, O. Certain, Amalie Couvillion, Lee Elliott, Aliya William Van Auken, George Veni, and David Wolfe. Ercelawn, Mark Gallyoun, Steve Gilbert, Russell We apologize for any inadvertent omissions. McDowell, Wayne Ostlie, and Ryan Smith. Finally, essential external funding for this work This project also benefited significantly from the came from the Department of Defense and the U. S. involvement of several current and former Nature Army Corps of Engineers through the Legacy Grant Conservancy staff including: Craig Groves, Greg program. Without this financial support, many of the Lowe, Robert Potts, and Jim Sulentich. Thanks for critical steps in the planning process might not have the push and encouragement. Our understanding of ever been completed. Thank you. the conservation issues important to the Edwards Plateau was greatly improved through the knowledge and experiences shared by many Conservancy staff including Angela Anders, Gary Amaon, Paul Barwick, Paul Cavanagh, Dave Mehlman, Laura Sanchez, Dan Snodgrass, Steve Jester, Bea Harrison, Jim Harrison, and Nurani Hogue. A large number of scientific professionals from academia, government agencies, and non- governmental organizations in a variety of fields were integral to developing the database upon which these portfolios are based. We’d like to thank each of © Lynn McBride/ The Nature Conservancy the following individuals for the effort expended and the patience exhibited in working to complete this important task: John Abbott, Nathan Allan, Bill Armstrong, Keith Arnold, John Baccus, David Bezanson, Keith Blair, Timothy Bonner, David Bowles, Kathy Boydston, Joe Chapa, John Cornelius, Krishna Costello, David Diamond, Robert Dowler, Barbara Dugelby, Robert Edwards, William Elliot, Craig Farquhar, Gary Garrett, Fran Gelwick, Joe Grzybowski, Tim Hayden, David Hillis, Susan Hovorka, Robert Howells, Clark Hubbs, Sharon Edwards Plateau Biodiversity Assessment I Executive Summary capture examples of the biodiversity associated with those explicitly represented. Our approach Ecoregional biodiversity assessment is a global emphasizes the identification of large landscapes that objective of The Nature Conservancy. With these are more likely to be able to maintain the critical assessments we are developing a global “blueprint” ecological processes important to ecosystem for successfully implementing our conservation function. vision: To conserve portfolios of functional The resultant portfolio of areas includes 102 conservation areas within and across ecoregions. terrestrial areas of biodiversity significance and 62 Through this portfolio approach, we will work with aquatic areas and stream/river segments. Each area partners to conserve the full array of ecological represents one or more examples of a species, systems and viable native communities and species. community, or ecosystem of conservation concern. The Edwards Plateau of central Texas includes a Conservation goals in terms of both abundance variety of well-known Texas features. The terrestrial and distribution have been met for 29 of 275 (11%) and aquatic environments found here are home to a species, communities or ecosystems of conservation rich diversity of plants and animals, many of which concern. Data and research gaps were identified for occur in this ecoregion and nowhere else on the several taxonomic groups and individual targets. We planet. The Edwards Plateau is truly a unique place, also identified some key and widespread threats to even from a global perspective. biodiversity in these areas. The most prominent The Edwards Plateau is also one of the fastest threats include overgrazing, excessive herbivory, developing regions in the United States. The altered fire regime, residential/urban development, Conservancy recognizes the complexity of this region and fragmentation. Finally, we assessed the current not only in a biological context but also in a status of biodiversity conservation in the Edwards socioeconomic setting. Just as there are unique Plateau by comparing our portfolio to a set of known species of plants and animals within the region, so areas under varying degrees of conservation too are there unique population, economic, cultural, management. Our results suggest that approximately and social attributes. To meet our mission we must 4% of the identified terrestrial portfolio and 2% of frame our conservation action within the acceptable the aquatic portfolio are already being managed for limits of each community in which we work. If the the conservation of biodiversity. Conservancy is to be successful within the Edwards Areas of biodiversity significance in the Plateau, we must facilitate the means by which portfolios represent places whose collective humans can live productively and sustainably while conservation would help insure that the biological conserving biological diversity. diversity of the Edwards Plateau ecoregion will For this assessment, we used a coarse filter - fine persist over the long term. The Nature Conservancy, filter approach to identify areas of biodiversity acting alone and through diverse partnerships, will significance within the ecoregion. Our goal was to focus its foreseeable future conservation efforts in capture representative examples of a subset of these areas. These are not areas of land acquisition species, communities, and ecosystems, with the priorities. Protection of these areas will necessitate a underlying assumption that in doing so we will also Edwards Plateau Biodiversity Assessment II broad array of conservation actions implemented by private landowners, public natural resource agencies and private conservation organizations. We hope that this assessment will serve as an important resource to guide those cooperative ventures. Note: Most of the data used to develop this assessment and accompanying report can be obtained © Lynn McBride/ The Nature Conservancy by contacting The Nature Conservancy, P.O. Box 1440, San Antonio, Texas 78295 or by calling (210) 224-8774. Edwards Plateau Biodiversity Assessment III TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................................................ I EXECUTIVE SUMMARY ........................................................................................................................................II I. INTRODUCTION AND ECOLOGICAL SETTING ...........................................................................................1 ECOREGIONS AND THE EDWARDS PLATEAU ...............................................................................................................1 Ecological Setting..................................................................................................................................................1 FOCUSING ON FUNCTIONAL LANDSCAPES ..................................................................................................................3 THE CHANGING LANDSCAPE ......................................................................................................................................4 II. SETTING PRIORITIES........................................................................................................................................6 IDENTIFYING CONSERVATION TARGETS.....................................................................................................................6 CONSERVATION TARGET OCCURRENCES ...................................................................................................................9 Distribution and Scale of Conservation Targets....................................................................................................9 Occurrence Mapping...........................................................................................................................................10 Mapping Aquatic Systems................................................................................................................................................. 11 Conservation Target Screening ...........................................................................................................................12 CONSERVATION GOALS............................................................................................................................................14 Stratification Units ..............................................................................................................................................14 Goal Values .........................................................................................................................................................14
Recommended publications
  • Baylor Geological Studies
    BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D.
    [Show full text]
  • Txu-Oclc-2601092.Pdf
    BUREAU OF ECONOMIC GEOLOGY The University of Texas Austin, Texas 78712 l'eter T. Flawn, Director Report of Investigations—No. 51 Relation of Ogallala Formation to the Southern High Plains in Texas By John C. Frye and A. Byron Leonard March 1964 Contents Page Abstract 5 Introduction 5 Regional physiography 8 The Ogallala Formation and the High Plains surface 10 Fossil seeds of the Ogallala Formation 11 Pleistocene dissection of the High Plains margin 14 Abandoned Panther Valley 15 Lake Lomax 17 Fossil molluscan assemblages 18 Conclusions 20 References 20 Index . 24 - Illustrations Figures Page Index of central-western Texas location 1. map showing of profiles and fossil localities . 7 2. Regional profiles in central-western Texas 9 abandoned Panther the 3. Profiles across Lake Lomax and Valley in of and Glasscock counties - 16 Big Spring area Howard, Martin, Plate I. Field views 22 Relation of Ogallala Formation to the Southern High Plains in Texas JOHN C. FRYE 1 and A. BYRON LEONARD^ ABSTRACT Studies along the southern and south- Pliocene and Pleistocene valley is de- scribed of Edwards Plateau eastern borders of the High Plains have across a prong the of outliers of south of and the drainage of demonstrated presence Big Spring, Lake Lomax is de- fossiliferous Ogallala Formation in Borden the late Pleistocene in and Scurry counties and have documented termined to have occurred pre-Bradyan Wisconsinan lime. A the occurrence of Pliocene deposition as far meaningful physio- be- The limit of cannot be drawn southeast as Sterling County. graphic boundary southern limits of the characteristic Ash Hollow seed floras is ex- tween the High Plains and the Edwards Plateau.
    [Show full text]
  • A Look at the Texas Hill Country Following the Path We Are on Today Through 2030
    A Look at the Texas Hill Country Following the path we are on today through 2030 This unique and special region will grow, but what will the Hill Country look like in 2030? Growth of the Hill Country The Hill Country Alliance (HCA) is a nonprofit organization whose purpose is to raise public awareness and build community support around the need to preserve the natural resources and heritage of the Central Texas Hill Country. HCA was formed in response to the escalating challenges brought to the Texas Hill Country by rapid development occurring in a sensitive eco-system. Concerned citizens began meeting in September of 2004 to share ideas about strengthening community activism and educating the public about regional planning, conservation development and a more responsible approach growth in the Hill Country. This report was prepared for the Texas Hill Country Alliance by Pegasus Planning 2 Growth of the Hill Country 3 Growth of the Hill Country Table of Contents Executive Summary Introduction The Hill Country Today The Hill Country in 2030 Strategic Considerations Reference Land Development and Provision of Utilities in Texas (a primer) Organizational Resources Materials Reviewed During Project End Notes Methodology The HCA wishes to thank members of its board and review team for assistance with this project, and the authors and contributors to the many documents and studies that were reviewed. September 2008 4 Growth of the Hill Country The Setting The population of the 17-County Hill Country region grew from approximately 800,000 in 1950 (after the last drought on record) to 2.6 million in 2000.
    [Show full text]
  • Curriculum Vitae
    DANIELLE WALKUP Post-Doctoral Research Associate, Natural Resources Institute, Texas A&M University College Station, TX 77843-2258 Email: [email protected] Education Texas A&M University – College Station, Texas Ph.D. – Wildlife and Fisheries Science – December 2018 Western New Mexico University - Silver City, New Mexico M.A.T. - Secondary Education - May 2010 B.S. - Forestry & Wildlife - May 2008 Research Experience Texas A&M University, College Station, TX Post-doctoral Research Associate Aug 2018 - Present Graduate Research Assistant Aug 2013 – Aug 2015; May 2016 – Dec 2016 Research Assistant Apr – Sept 2011; Apr 2012 – Aug 2013 • 2012-2016 – Led mark-recapture studies with project PIs, organized field operations, maintained equipment and schedules, analyzed data, prepared publications and technical reports, trained and supervised field technicians • 2011-13 - Led pitfall trapping studies with project PIs, conducted mark-recapture studies, supervised project logistics Western New Mexico University, Silver City, NM Assistant to P.I Feb – Dec 2013 • Assisted in designing the post-fire plant survey protocol in comparative survey sites in the Gila National Forest • Collected, identified and preserved vegetation from established survey sites Biological Field Manager Oct 2012 – Apr 2013 • Analyzed data; writing reports and papers on Common Blackhawk data collected from 2010-2012 • Data entry and analysis of Cliff-Gila Valley bird surveys Biology Field Assistant May-Aug 2009; May- Aug 2010; Apr-Dec 2011 • In plots along the Gila River, used a GPS to mark locations of Southwestern Willow Flycatchers, Yellow-Billed Cuckoos, Common Blackhawks, and other birds • Surveyed and identified populations of Southwestern Willow Flycatchers, identifying breeding males and territories • Assisted in writing summary reports of Southwestern Willow Flycatcher and Common Blackhawk monitoring results for distribution to the U.S.
    [Show full text]
  • GMA 7 Explanatory Report - Draft Aquifers of the Llano Uplift Region (Ellenburger-San Saba, Hickory, Marble Falls)
    GMA 7 Explanatory Report - Draft Aquifers of the Llano Uplift Region (Ellenburger-San Saba, Hickory, Marble Falls) Prepared for: Groundwater Management Area 7 Prepared by: William R. Hutchison, Ph.D., P.E., P.G. Independent Groundwater Consultant 9305 Jamaica Beach Jamaica Beach, TX 77554 512-745-0599 [email protected] January 13, 2020 Llano Uplift Aquifers GMA 7 Explanatory Report - Draft Table of Contents 1.0 Groundwater Management Area 7 .............................................................................................. 2 2.0 Desired Future Condition History ............................................................................................... 6 2.1 2010 Desired Future Conditions............................................................................................... 6 2.2 2016 Desired Future Conditions............................................................................................... 7 2.3 Third Round Desired Future Conditions ................................................................................ 8 3.0 Policy Justification ........................................................................................................................... 9 4.0 Technical Justification ................................................................................................................ 10 5.0 Factor Consideration .................................................................................................................. 11 5.1 Groundwater Demands and Uses..........................................................................................
    [Show full text]
  • EASTERN REDCEDAR (Juniperus Virginiana) EXPANSION, EFFECTS, and CONTROL
    EASTERN REDCEDAR (Juniperus virginiana) EXPANSION, EFFECTS, AND CONTROL A LITERATURE REVIEW FROM THE TALLGRASS PRAIRIE REGION OF THE CENTRAL U.S. Eastern redcedar burning, photo by Dirac Twidwell A collaborative product from the Great Plains Fire Science Exchange and Tallgrass Prairie and Oak Savanna Fire Science Consortium Written by: Tracy L. Hmielowski [email protected] Great Plains Pub # GPE 2014-17 Tallgrass Prairie Pub # TPOS LR02-2014 Page 1 of 14 Tallgrass prairie ecosystems in the United States are priorities for conservation of Key Points grassland communities. While much of the Changes in wildland fire regime have tallgrass prairie in the Great Plains and upper led to an expansion of eastern Midwest has been converted to cropland or redcedar in tallgrass prairie. other developments, some areas still support native prairie species (Samson and Knopf 1994). Increased eastern redcedar leads to Less than 4% of the original tallgrass prairie decreased herbaceous biodiversity, remains (Samson and Knopf 1994). In addition decreased forage production, and to the threats of expanding urban development increased Wildland Urban Interface and agriculture, many of these open grasslands concerns. are being invaded by woody species (Briggs et Prescribed fire is most effective for al. 2005). One tree species of concern in this controlling small trees, or change to woody dominance is eastern maintaining sites where eastern redcedar (Juniperus virginiana; hereafter cedar is not a problem; mechanical redcedar) a rapidly expanding evergreen treatments may be necessary for common throughout the eastern United States. In this document, we focus on the expansion of dealing with larger trees. redcedar (Fig.
    [Show full text]
  • Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
    MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof.
    [Show full text]
  • Wildlife Populations in Texas
    Wildlife Populations in Texas • Five big game species – White-tailed deer – Mule deer – Pronghorn – Bighorn sheep – Javelina • Fifty-seven small game species – Forty-six migratory game birds, nine upland game birds, two squirrels • Sixteen furbearer species (i.e. beaver, raccoon, fox, skunk, etc) • Approximately 900 terrestrial vertebrate nongame species • Approximately 70 species of medium to large-sized exotic mammals and birds? White-tailed Deer Deer Surveys Figure 1. Monitored deer range within the Resource Management Units (RMU) of Texas. 31 29 30 26 22 18 25 27 17 16 24 21 15 02 20 28 23 19 14 03 05 06 13 04 07 11 12 Ecoregion RMU Area (Ha) 08 Blackland Prairie 20 731,745 21 367,820 Cross Timbers 22 771,971 23 1,430,907 24 1,080,818 25 1,552,348 Eastern Rolling Plains 26 564,404 27 1,162,939 Ecoregion RMU Area (Ha) 29 1,091,385 Post Oak Savannah 11 690,618 Edwards Plateau 4 1,308,326 12 475,323 5 2,807,841 18 1,290,491 6 583,685 19 2,528,747 7 1,909,010 South Texas Plains 8 5,255,676 28 1,246,008 Southern High Plains 2 810,505 Pineywoods 13 949,342 TransPecos 3 693,080 14 1,755,050 Western Rolling Plains 30 4,223,231 15 862,622 31 1,622,158 16 1,056,147 39,557,788 Total 17 735,592 Figure 2. Distribution of White-tailed Deer by Ecological Area 2013 Survey Period 53.77% 11.09% 6.60% 10.70% 5.89% 5.71% 0.26% 1.23% 4.75% Edwards Plateau Cross Timbers Western Rolling Plains Post Oak Savannah South Texas Plains Pineywoods Eastern Rolling Plains Trans Pecos Southern High Plains Figure 3.
    [Show full text]
  • Eastern Llano Texas; a Field David
    Fractures Caused by North-South Compression, Eastern Llano Uplift, Central Texas; A Field Guide David Amsbury, Russell Hickerson, and Walter Haenggi Gulf Coast Association of Geological Societies, Austin, Texas, October 8, 1994 The field trip leaders gratefully acknowledge support for this trip from: Conoco Inc., Finding Functional Excellence,for defraying costs for refreshments; and Union Texas Petroleum for subsidizing costs of printing the guidebook. 1 Preface The leaders of the field trip want you, the participants, to consider three ideas: The fracturing that shattered the Central Texas crust during mid- Pennsylvanian time may have been strike-slip, not extensional; Compression responsible for the fracturing may have been oriented north-south, not east-west; and The implications of these two ideas include hypotheses about plate- tectonic history and predictions about the distribution of rock bodies on the surface and within the subsurface, that can be tested by future observation. We will visit a handful of exposures where fracture patterns are consistent with strike-slip movement in response to north-south compression. Our main "evidence" consists of 1) regional patterns of mapped faults plus 2) very local features such as sub-horizontal slickensides and mullions, and diamond-shaped sets of vertical fractures. Neither type of evidence is conclusive, only suggestive. We believe that if you look at the evidence with an open mind, you will find ways to test our ideas, to negate them, corroborate them, or extend them in ways we have not envisioned. 2 Contents PREFACE p. 1 CONTENTS p. 2 INTRODUCTION p. 3 Figure 1 Regional fault outline map p.
    [Show full text]
  • Spot-Tailed Earless Lizard Update: January 2017
    Spot-Tailed Earless Lizard Update: January 2017 Travis LaDuc Roel Lopez UT Austin Texas A&M Brad Wolaver Wade Ryberg UT Austin Texas A&M Mike Duran Toby Hibbitts The Nature Conservancy Texas A&M Ben Labay Matt Fujita UT Austin UT Arlington Jon Paul Pierre Corey Roelke UT Austin UT Arlington Ian Wright UT Austin Gautam Surya UT Austin Cody Shank UT Austin Photo by Mike Duran Thursday, January 26, 2017 Goals and Agenda Update of scien7fic progress since Sept. 2016 Discussion of ongoing research Findings So Far 1. Field data update for 2016 2. Insect survey update 3. Gene7cs status 4. Habitat modeling 1. Status 2. Road bias 3. Ground-truthing + possible addi7onal research… Study Area 2015 Surveys • April 22 – Sept 24 • 274 surveys in 57 counes • 18 coun7es with posive H. lacerata surveys • 174 H. lacerata observed 2016 Surveys • April 6 – Sept 28 • 171 surveys in 28 counes • 53 surveys in 7 coun7es with posive H. lacerata surveys • 170 H. lacerata observed • 91 animals marked; 2 recaptures 2016 Surveys • 171 surveys (April 6 – August 26) • 52 walking; 18 lizards seen (0.04 lizards/hr) • 119 driving; 152 lizards seen (0.30 lizards/hr) • 28 counes across historical range • Areas of 2015 sigh7ngs • Historical range where no 2015 sigh7ngs • 170 Holbrookia lacerata sighted • No new coun7es with H. lacerata from 2015 (save Suon Co.) • Juveniles observed in every unit 2016 Surveys • Mark-recapture: • 91 individuals iden7fied (all photographed, 61 toe-clipped) • Two recaptures • Combinaon road and walking surveys Diet / Insect Surveys Diet data obtained
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Ecoregions of Texas
    Ecoregions of Texas 23 Arizona/New Mexico Mountains 26 Southwestern Tablelands 30 Edwards Plateau 23a Chihuahuan Desert Slopes 26a Canadian/Cimarron Breaks 30a Edwards Plateau Woodland 23b Montane Woodlands 26b Flat Tablelands and Valleys 30b Llano Uplift 24 Chihuahuan Deserts 26c Caprock Canyons, Badlands, and Breaks 30c Balcones Canyonlands 24a Chihuahuan Basins and Playas 26d Semiarid Canadian Breaks 30d Semiarid Edwards Plateau 24b Chihuahuan Desert Grasslands 27 Central Great Plains 31 Southern Texas Plains 24c Low Mountains and Bajadas 27h Red Prairie 31a Northern Nueces Alluvial Plains 24d Chihuahuan Montane Woodlands 27i Broken Red Plains 31b Semiarid Edwards Bajada 24e Stockton Plateau 27j Limestone Plains 31c Texas-Tamaulipan Thornscrub 25 High Plains 29 Cross Timbers 31d Rio Grande Floodplain and Terraces 25b Rolling Sand Plains 29b Eastern Cross Timbers 25e Canadian/Cimarron High Plains 29c Western Cross Timbers 25i Llano Estacado 29d Grand Prairie 25j Shinnery Sands 29e Limestone Cut Plain 25k Arid Llano Estacado 29f Carbonate Cross Timbers 25b 26a 26a 25b 25e Level III ecoregion 26d 300 60 120 mi Level IV ecoregion 26a Amarillo 27h 60 0 120 240 km County boundary 26c State boundary Albers equal area projection 27h 25i 26b 25j 27h 35g 35g 26b Wichita 29b 35a 35c Lubbock 26c Falls 33d 27i 29d Sherman 35a 25j Denton 33d 35c 32a 33f 35b 25j 26b Dallas 33f 35a 35b 27h 29f Fort 35b Worth 33a 26b Abilene 32c Tyler 29b 24c 29c 35b 23a Midland 26c 30d 35a El Paso 24a 23b Odessa 35b 24a 24b 25k 27j 33f Nacogdoches 24d Waco Pecos 25j
    [Show full text]