Eastern Llano Texas; a Field David

Total Page:16

File Type:pdf, Size:1020Kb

Eastern Llano Texas; a Field David Fractures Caused by North-South Compression, Eastern Llano Uplift, Central Texas; A Field Guide David Amsbury, Russell Hickerson, and Walter Haenggi Gulf Coast Association of Geological Societies, Austin, Texas, October 8, 1994 The field trip leaders gratefully acknowledge support for this trip from: Conoco Inc., Finding Functional Excellence,for defraying costs for refreshments; and Union Texas Petroleum for subsidizing costs of printing the guidebook. 1 Preface The leaders of the field trip want you, the participants, to consider three ideas: The fracturing that shattered the Central Texas crust during mid- Pennsylvanian time may have been strike-slip, not extensional; Compression responsible for the fracturing may have been oriented north-south, not east-west; and The implications of these two ideas include hypotheses about plate- tectonic history and predictions about the distribution of rock bodies on the surface and within the subsurface, that can be tested by future observation. We will visit a handful of exposures where fracture patterns are consistent with strike-slip movement in response to north-south compression. Our main "evidence" consists of 1) regional patterns of mapped faults plus 2) very local features such as sub-horizontal slickensides and mullions, and diamond-shaped sets of vertical fractures. Neither type of evidence is conclusive, only suggestive. We believe that if you look at the evidence with an open mind, you will find ways to test our ideas, to negate them, corroborate them, or extend them in ways we have not envisioned. 2 Contents PREFACE p. 1 CONTENTS p. 2 INTRODUCTION p. 3 Figure 1 Regional fault outline map p. 5 RQADLOG p. 6 STOP1- HIGHWAY 281 OVERLOOK p. 8 Figure 2 Stratigraphic section p. 9 Figure 3 Marble Falls fault block p. 10 STOP2 -DOWQUARRY p. 11 Figure 4a Map of the quarry p. 12 Figure 4b, c Sketches of flower structures . p. 12 LUNCH -LONGHORNCAVERN STATEPARK p. 14 STOP3 -HOOVERPOINTOVERLOOK p. 15 Figure 5 Photos of fractures, Hoover Point p. 16 STOP4 -LEFT ABUTMENT OF WIRTZ DAM p. 18 Figure 6 Sketch, location map p. 19 Figure 7 Photo, fractured xenolith; diamond in aplite p. 20 OPTIONALSTOP -MARBLE FALLS FAULT p. 21 Figure 8 Fractures in Marble Falls beds p. 22 Figure 9 Jolly map p. 23 STOP5 -RIGHTABUTMENTOFWIRTZDAM p. 24 Figure 10 Photo, right steppers p. 25 Figure 11 Photo, displaced pegmatite dike p. 26 - STOP6 HIGHWAY 281 WRAPUP p. 27 Figure 12 Plate tectonic summary p. 28 REFERENCES p. 29 3 Introduction The conventional interpretation of the Ouachita belt - before and after plate tectonic theory became generally accepted - assumes primary westward movement of the orogen (present coordinates) in Central Texas (Flawn, et al., 1961; Viele and Thomas, 1989, Fig. 1; Ewing, 1991). Pindell (1985, Figure 2) and Sherbet and Cebull (1987, Figure 3D) proposed northwestward plate movement parallel to the axis of the San Marcos Arch. The kinematic scheme of Sacks and Secor (1990) called for rotation of the compression direction from north- south during the "middle Carboniferous" to east-west in the Permian. The plate-tectonic implications of westward orogenic movement in Central Texas had always struck Haenggi and Amsbury as odd; the conventional explanation requires: 1) a northward shove by an impacting continent (or microplate) that bypassed Central Texas to create the Ouachita Mountains during the Late Mississippian; 2) a southward movement into the present East Texas Basin to disengage the impactor; 3) a westward shove by the mass during the mid-Pennsylvanian to form the Ouachita System alongthe western side of the East Texas Basin; 4) eastward movement to disengagethe mass again, create such extension faulting as had not been created already by flexure into the Ouachita foredeep during east-west compression; and finally 5) southward movement of the mass out of the region to allow subsidence of the Ouachita fold belt below sea level. When Llanoria was in vogue (Miser, 1921; Schuchert, 1930; Dunbar, 1949, Figs. 74c, 154, p. 252) differential vertical uplift of different parts of the continent could plausibly cause gravity sliding of material into the geosyncline at different times. A mechanism that could cause later subsidence of Llanoria (and Appalachia) beneath the deep oceans was recognizedto be a problem. But after plate-tectonic theory solved that conundrum, a continent-sized plate wobbling about like a cam on an automobile camshaft was still a little difficult to envision. The lack of a neat fit of the rocks and structures to the ruling paradigm was puzzling. 4 - Haenggi was tasked in 1989 with solving a feedstock problem erratic silica in Ellenburger dolomite that was being burned to dololime at the Brownlee Ranch Quarry for Dow Chemical Company. He involved Amsbury in early 1990 because of previous experience with the rocks in the region. The silica problem was seen first as a chert problem, either as hydrothermal chert along fracture patterns (Haenggi), or detrital chert grains in early Cretaceous karst sinks (Amsbury). Preliminary field work demonstrated that neither was correct - the chert is early-diagenetic in peritidal dolomite that overlies the pure dolomite intended to be produced. The peritidal chert was dropped down into the underlying material along complex fracture zones (not karst sinkholes). Detailed mapping showed a complex pattern of fractures, but a pattern. Flower structures, and subhorizontal slickensides and mullions, were discovered on the overwhelmingly near-vertical fractures. A new look at the 1:250,000 scale geological maps (Barnes, 1976, 1981) resulted in the interpretation that the dominant mid-Pennsylvanian fracture pattern throughout the Llano Uplift (Figure 1) is compatible with strike-slip faulting. Haenggi believed that north- south compression was most probable, but at the time the 1991 GCAGS Abstract was due (Amsbury and Haenggi, 1991) Amsbury still thought that east-west compression would serve. By the time of the meeting, both authors were in agreement that north-south compression is much more likely (Amsbury and Haenggi, 1993). Hickerson was discussing thesis topics with W. R. Muehlberger, who had reviewed the Houston Geological Society article. They realized that detailed examination of the fracture patterns at other outcrops in the eastern Llano Uplift could support or falsify the hypothesis of strike-slip faulting. If the hypothesis were supported, further study might provide unequivocable evidence of the dominant direction of compression. Hickerson's work, as demonstrated during the field trip, did support both the strike-slip hypothesis and probable north-south compression. What we have not done is study the vast remaining reaches of the Uplift. There are many more theses to be written on this subject, and many more pleasant Spring and Fall weekend trips to be experienced. 5 1)Fault patterninthe outcropping pre-middlePennsylvanian rocks of the Llano uplift, central Texas. Solid lines are faults shown on Barnes (1976, 1981); dotted lines are possible faults inferred from outcrop patterns. Thepattern previously was assumed to reflect foreland normal faulting, either 1) inresponse to "relaxation" of the Ouachita eastward compression, or 2) byforeland downwarpingduringthe orogeny; but the patterniscompatible withpervasive strike-slip faulting,mostly right-lateral,during the orogeny. 6 Road Log Begins at Stop 1 - Roadside park overlook on the west side of U. S.281, south of Marble Falls Drive north on U. S. 281 0.6 0.6 Pass through Marble Falls 5.8 6.4 Turn right into Dean Word ("Dow Brownlee Ranch") Quarry. 1.4 7.8 After Stop 2 in quarry, turn right (north) onto U. S. 281. 2.7 10.5 Turn left (west) on Park Road 4 toward Longhorn Cavern State Park. 5.9 16.4 Turn left into Longhorn Cavern State Park entrance; lunch. 0.5 16.9 Leave Park, turn left (west) onto Park road 4. 1.7 18.6 Overlook from the top of Backbone Ridge. 0.2 18.8 Turn left onto Park Road 4 again. 0.7 19.5 Turn left (south) on Ranch Road 2342 toward Kingsland. 4.2 23.7 Turn left (east) on Ranch Road 1431 toward Marble Falls. 1.0 24.7 Stop 3 - Hoover Point road cut. Park on right. 0.2 24.9 Leave parking lot; continue east toward Marble Falls. 6.9 31.8 Turn right on road marked with a (small) sign to Wirtz Dam. Look for large power transmission towers as a landmark. 2.2 34.0 Follow curve of road to left. 0.7 34.7 Just past the power substation,turn left and proceed down the hill past the LCRA-NIORB sign. Park near the granite outcrop for Stop 4. 0.2 34.9 Drive up the road out of the dam area. 0.1 35.0 Turn right on road at the top of the hill. 0.4 35.4 Veer right. 2.5 37.9 Turn right (east) on Ranch Road 1431 toward Marble Falls. 7 2.1 40.0 Marble Falls fault (Marble Falls Limestone against Town Mountain Granite) just east of the Granite View Roadside Park. Time and weather permitting we will make a brief stop at this roadside park to discuss Jolly's mapping of fractures in the granite a quarter-mile north of here, and Hickerson's analysis of the fractures in the Marble Falls along Ranch Road 1431. 1.2 41.2 Intersection of RR 1431 and U.S. 281 in Marble Falls. Turn right (south) on U. S. 281,and cross the Colorado River bridge to the traffic light. 1.0 42.2 Turn right on Ranch Road 2147. 4.1 46.3 Turn right at sign to Boat Ramp. 0.4 46.7 Enter Cottonwood Resource Area; look for a fence cut by a pedestriangate near a parking area. Walk down to river for Stop 5. 0.4 47.1 Exit Resource area, turn left (east) on Ranch Road 2147.
Recommended publications
  • GMA 7 Explanatory Report - Draft Aquifers of the Llano Uplift Region (Ellenburger-San Saba, Hickory, Marble Falls)
    GMA 7 Explanatory Report - Draft Aquifers of the Llano Uplift Region (Ellenburger-San Saba, Hickory, Marble Falls) Prepared for: Groundwater Management Area 7 Prepared by: William R. Hutchison, Ph.D., P.E., P.G. Independent Groundwater Consultant 9305 Jamaica Beach Jamaica Beach, TX 77554 512-745-0599 [email protected] January 13, 2020 Llano Uplift Aquifers GMA 7 Explanatory Report - Draft Table of Contents 1.0 Groundwater Management Area 7 .............................................................................................. 2 2.0 Desired Future Condition History ............................................................................................... 6 2.1 2010 Desired Future Conditions............................................................................................... 6 2.2 2016 Desired Future Conditions............................................................................................... 7 2.3 Third Round Desired Future Conditions ................................................................................ 8 3.0 Policy Justification ........................................................................................................................... 9 4.0 Technical Justification ................................................................................................................ 10 5.0 Factor Consideration .................................................................................................................. 11 5.1 Groundwater Demands and Uses..........................................................................................
    [Show full text]
  • Ecoregions of Texas
    Ecoregions of Texas 23 Arizona/New Mexico Mountains 26 Southwestern Tablelands 30 Edwards Plateau 23a Chihuahuan Desert Slopes 26a Canadian/Cimarron Breaks 30a Edwards Plateau Woodland 23b Montane Woodlands 26b Flat Tablelands and Valleys 30b Llano Uplift 24 Chihuahuan Deserts 26c Caprock Canyons, Badlands, and Breaks 30c Balcones Canyonlands 24a Chihuahuan Basins and Playas 26d Semiarid Canadian Breaks 30d Semiarid Edwards Plateau 24b Chihuahuan Desert Grasslands 27 Central Great Plains 31 Southern Texas Plains 24c Low Mountains and Bajadas 27h Red Prairie 31a Northern Nueces Alluvial Plains 24d Chihuahuan Montane Woodlands 27i Broken Red Plains 31b Semiarid Edwards Bajada 24e Stockton Plateau 27j Limestone Plains 31c Texas-Tamaulipan Thornscrub 25 High Plains 29 Cross Timbers 31d Rio Grande Floodplain and Terraces 25b Rolling Sand Plains 29b Eastern Cross Timbers 25e Canadian/Cimarron High Plains 29c Western Cross Timbers 25i Llano Estacado 29d Grand Prairie 25j Shinnery Sands 29e Limestone Cut Plain 25k Arid Llano Estacado 29f Carbonate Cross Timbers 25b 26a 26a 25b 25e Level III ecoregion 26d 300 60 120 mi Level IV ecoregion 26a Amarillo 27h 60 0 120 240 km County boundary 26c State boundary Albers equal area projection 27h 25i 26b 25j 27h 35g 35g 26b Wichita 29b 35a 35c Lubbock 26c Falls 33d 27i 29d Sherman 35a 25j Denton 33d 35c 32a 33f 35b 25j 26b Dallas 33f 35a 35b 27h 29f Fort 35b Worth 33a 26b Abilene 32c Tyler 29b 24c 29c 35b 23a Midland 26c 30d 35a El Paso 24a 23b Odessa 35b 24a 24b 25k 27j 33f Nacogdoches 24d Waco Pecos 25j
    [Show full text]
  • Economic Geology Resources of the Llano Uplift Region
    Economic Geology Resources of the Llano Uplift Region and the Historical Impacts to the Region’s Growth Guidebook to the Texas Section- American Institute of Professional Geologists Spring Field Trip, Llano Uplift Region, Central Texas: May 14-15, 2016 Rima Petrossian, Ph.D., P.G., C.P.G.: Author and Field-Trip Organizer Renee Ryan, P.G., C.P.G.: Author and Field-Trip Leader Chris Caran, P.G.: Author and Field Guide, Los Almagres Mine Michael Jacobs, P.G., Field Trip Organizer Michael D. Campbell, P.G., P.H., C.P.G.: Author and Field-Trip Organizer Martin Meinshausen: Field Guide, Voca Sand Mine Neyda Maymi: Field Guide, Voca Sand Mine © 2016 Version 2.2 Acknowledgements A big thank you goes to the Stotts Family for allowing us exclusive access to Los Almagres mine site at Packsaddle Mountain. Also, a special thanks to Premier Silica for access to the Hickory Sands Mine and for sponsoring lunch. 2 | Page Field Trip Schedule, May 14-15, 2016 Friday Evening: Optional Friday happy hour/no-host dinner: 6 PM Evening at River City Grille, Marble Falls, Texas. Saturday Morning: 0730 hrs. Stop 1: Meet at Historical Marker Roadside Park, FM1431 westbound about 1.85 miles from Hwy 281 across from Town Mountain Granite Mine on the north side of the road for breakfast tacos (provided). Distribute for signature and return the AIPG Indemnification Document, and hand out field-trip guide; discuss geology and historical importance of groundwater and granite to Llano Uplift area (Ryan, Wise, Jacobs, etc., 30 minutes) Depart first stop in caravan east 1.85 miles to Hwy 281 and FM 1431 west intersection, turn south or right.
    [Show full text]
  • A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion
    A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion June 2004 © The Nature Conservancy This document may be cited as follows: The Nature Conservancy. 2004. A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion. Edwards Plateau Ecoregional Planning Team, The Nature Conservancy, San Antonio, TX, USA. Acknowledgements Jasper, Dean Keddy-Hector, Jean Krejca, Clifton Ladd, Glen Longley, Dorothy Mattiza, Terry The results presented in this report would not have Maxwell, Pat McNeal, Bob O'Kennon, George been possible without the encouragement and Ozuna, Jackie Poole, Paula Power, Andy Price, assistance of many individuals and organizations. James Reddell, David Riskind, Chuck Sexton, Cliff Most of the day-to-day work in completing this Shackelford, Geary Shindel, Alisa Shull, Jason assessment was done by Jim Bergan, Bill Carr, David Singhurst, Jack Stanford, Sue Tracy, Paul Turner, O. Certain, Amalie Couvillion, Lee Elliott, Aliya William Van Auken, George Veni, and David Wolfe. Ercelawn, Mark Gallyoun, Steve Gilbert, Russell We apologize for any inadvertent omissions. McDowell, Wayne Ostlie, and Ryan Smith. Finally, essential external funding for this work This project also benefited significantly from the came from the Department of Defense and the U. S. involvement of several current and former Nature Army Corps of Engineers through the Legacy Grant Conservancy staff including: Craig Groves, Greg program. Without this financial support, many of the Lowe, Robert Potts, and Jim Sulentich. Thanks for critical steps in the planning process might not have the push and encouragement. Our understanding of ever been completed. Thank you. the conservation issues important to the Edwards Plateau was greatly improved through the knowledge and experiences shared by many Conservancy staff including Angela Anders, Gary Amaon, Paul Barwick, Paul Cavanagh, Dave Mehlman, Laura Sanchez, Dan Snodgrass, Steve Jester, Bea Harrison, Jim Harrison, and Nurani Hogue.
    [Show full text]
  • Aquifers of Texas
    Texas Water Development Board Report 345 Aquifers of Texas bY John B. Ashworth, Geologist and Janie Hopkins, Geologist November 1995 Aquifers of‘Texas November1935 Texas Water Development Board Craig D. Pedersen, Executive Administrator Texas Water Development Board William B. Madden, Chairman No6 Fernandez, Vice Chairman Charles W. Jenness, Member Elaine M. Barron, M.D., Member Lynwood Sanders, Member Charles L. Geren, Member Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgement. Published and Distributed by the Texas Water Development Board P.O. Box 13231 Austin, Texas787 1 l-323 1 iii Aquifers of Texas November 1995 Table of Contents Page INTRODUCTION.. ................. 1 GENERAL GROUND-WATER PRINCIPLES.. 7 MAJOR AQUIFERS Ogallala. .......................... 10 Gulf Coast. ..................... 12 Edwards (Balcones Fault Zone). ..... 14 Carrizo-Wilcox. ................ 16 Trinity. ............................ 18 Edwards-Trinity (Plateau). ......... 20 Seymour. ......................... 22 Hueco-Mesilla Bolson. ..... 24 Cenozoic Pecos Alluvium. ....... 26 MINOR AQUIFERS Bone Spring-Victorio Peak. ...... 30 Dockum. ......................... 32 Brazos River Alluvium. ... 34 Hickoryv. ........................ 36 West Texas Bolsons. .......... 38 Queen City. ................. 40 Woodbine. .................. 42 Edwards-Trinity (High Plains). ... 44 Blaine. ........................ 46 Sparta. ........................ 48 Nacatoch. ...................... 50 52 lgneous. ......................... 54 Rita Blanca. .................... 56 Ellenburger-San Saba. ...... 58 Blossom. ....................... 60 Marble Falls. ................... 62 Rustler. ............................. 64 Capitan Reef Complex. ..
    [Show full text]
  • Hill Country Is Located in Central Texas
    TABLE OF CONTENTS Regional Description ……………………………………………………1 Topography and Characteristics………………………………..2 Major Cities / Rainfall / Elevation……………………………….3 Common Vegetation……………………………………………..4 Rare Plants and Habitats……………………………………..…4 Common Wildlife ……………………………………………..….4 Rare Animals …………………………………………….……....4 Issues and Topics of Concern ……………………….…………..……5 Project WILD Activities …………………….……………….………….6 TPWD Resources …………………………………………….….…….6 REGIONAL DESCRIPTION The Texas Hill Country is located in Central Texas. A drive through the Hill Country will take the visitor across rolling hills, crisscrossed with many streams and rivers. The Edwards Plateau dominates a large portion of the Texas Hill Country and is honeycombed with thousands of caves. Several aquifers lie beneath the Texas Hill Country. The Edwards Aquifer is one of nine major state aquifers. It covers 4,350 square miles and eleven counties. It provides drinking and irrigation water as well as recreational opportunities for millions of people. San Antonio obtains its entire municipal water supply from the Edwards Aquifer and is one of the largest cities in the world to rely solely on a single ground-water source. Springs are created when the water in an aquifer naturally emerges at the surface. Central Texas was once a land of many springs. Statewide, it is estimated that Texas currently has nearly 1,900 known springs. The majority of these springs are located within the Texas Hill Country. Many of the streams that flow through the rocky, tree-shaded hills of Central Texas are fed by springs. These streams are home to many species of fish, amphibians, plants and insects, which depend on a steady flow of clean water for survival. Some of these species (salamanders in particular) are found only in these spring- fed environments.
    [Show full text]
  • Precambrian Basement Aquifer, Llano Uplift, Central Texas
    Precambrian basement aquifer, Llano Uplift, Central Texas Brian B. Hunt, P.G. Barton Springs/Edwards Aquifer Conservation District Abstract This paper provides an overview and initial conceptual model for the Precambrian Bedrock Aquifer of the Central Texas Llano Uplift. Evaluation of well data from the Texas Water Development Board, a geographic information system, geologic mapping, and fracture-trace analysis were the primary methods used in this study. Results of the study indicate that the Precambrian basement rocks of the Llano Uplift cover approximately 1,290 square miles and provide the sole source of water for an estimated 7,200 people and 73,000 livestock supporting an estimated pumping of 3,600 acre-feet per year. The aquifer is more prolific than previously considered, as fracturing and faulting are more extensive than shown on geologic maps. The Precambrian Basement Aquifer could be considered a minor aquifer of Texas because it supplies “relatively small quantities of water in large areas of the State.” Introduction The Llano Uplift of Central Texas is a broad structural dome exposing Precambrian granites and metamorphic rocks (basement rocks) through an erosional window of Paleozoic and Mesozoic sediments (Figure 1). Basement rocks of the Llano Uplift cover approximately 1,290 square miles and provide the sole source of water for an estimated 7,200 people and 73,000 livestock in the region. Precambrian basement rocks of the Llano Uplift are currently not listed among the minor aquifers of Texas (Ashworth and Hopkins, 1995). Although the Precambrian Basement rocks do not generally provide prolific water supplies relative to the surrounding Paleozoic and Mesozoic aquifers, they do form an aquifer that can supply modest yields of fresh water when fractured or deeply weathered.
    [Show full text]
  • The Texas Grenville Orogen, Llano Uplift, Texas
    THE TEXAS GRENVILLE OROGEN, LLANO UPLIFT, TEXAS Fieldtrip guide to the Precambrian Geology of the Llano Uplift, central Texas by Sharon Mosher, Mark Helper, and Jamie Levine Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin TRIP 405 for THE GEOLOGICAL SOCIETY OF AMERICA ANNUAL MEETING, HOUSTON, TX, FALL 2008 Cosponsored by GSA Structural Geology and Tectonics Division THE TEXAS GRENVILLE OROGEN, LLANO UPLIFT, TEXAS Fieldtrip guide to the Precambrian Geology of the Llano Uplift, central Texas by Sharon Mosher, Mark Helper, and Jamie Levine Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin TRIP 405 for THE GEOLOGICAL SOCIETY OF AMERICA ANNUAL MEETING, HOUSTON, TX, FALL 2008 Cosponsored by GSA Structural Geology and Tectonics Division Cover: Robert M. Reed Copyright by Sharon Mosher 2008 GEOLOGY OF THE LLANO UPLIFT by Sharon Mosher INTRODUCTION The Llano Uplift of central Texas consists of multiply deformed, 1.37-1.23 Ga metasedimentary, metavolcanic and metaplutonic rocks intruded by 1.13 to 1.07 Ga, syn- tectonic to post-tectonic granites (Fig. 1) (Mosher, 1998). An early high-pressure eclogite-facies metamorphism is overprinted by dynamothermal, medium-pressure metamorphism at upper amphibolite-facies conditions and a subsequent low-pressure, middle amphibolite-facies metamorphism associated with widespread intrusion of late granites (Carlson et al., 2007). These rocks are exposed in a gentle structural dome exposing ~9000 km2 of Middle Proterozoic crystalline basement in an erosional window through Phanerozoic sedimentary cover (Muehlberger et al., 1967; Flawn and Muehlberger, 1970). Normal and oblique-slip faults related to the Ouachita Orogeny affect Precambrian to Pennsylvanian rocks and juxtapose Paleozoic strata with the Precambrian exposures.
    [Show full text]
  • Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations Spring 5-9-2016 Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas Ashley N. Landers Stephen F Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, and the Natural Resources and Conservation Commons Tell us how this article helped you. Repository Citation Landers, Ashley N., "Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas" (2016). Electronic Theses and Dissertations. 40. https://scholarworks.sfasu.edu/etds/40 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/40 Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas By Ashley Landers, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the Requirements For the Degree of Masters of Science STEPHEN F. AUSTIN STATE UNIVERSITY May, 2016 Speleogenesis of Critchfield Bat Caves and Associated Hydrogeology of the Northern Edwards Aquifer, Williamson County, Texas By Ashley Landers, B.S.
    [Show full text]
  • THE RICE INSTITUTE Precambrian Geology of Part of the Little Llano
    THE RICE INSTITUTE Precambrian Geology of Part of the Little Llano River Valley, Llano and San Saba Counties, Texas by Edward George Lidiak A THESIS SUBMITTED TO THE FACULTY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Houston, Texas April, i960 ACKNOWLEDGMENTS The writer expresses his gratitude to Dr. John J. W. Rogers of The Rice Institute for his advice throughout the entire study. Appreciation is expressed also to Dr. Thomas W. Donnelly of The Rice Institute for helpful suggestions of optical techniques and to Dr. Stephen E. Clabaugh of the University of Texas for his informative discussions of the Packsaddle schist in eastern Llano County. Mr. Thomas Mackey, Jr., of the Wah Chang Corporation, Texas City, Texas, supplied the chemical analyses. The Department of Geology of The Rice Institute financed the aerial photographs and thin sections and, in addition, supplied financial support for part of the field investigations. Finally a debt of gratitude is owed the ranchers of the area for their hospitality and co-cperation during the field work. TABLE OF CONTENTS page INTRODUCTION 1 LOCATION AND SCOPE OF WORK 2 PREVIOUS WORK 5 Llano Uplift 5 Little Llano Area 7 GEOLOGIC SETTING 8 STRUCTURAL SETTING 12 Introduction 12 Regional Structure 12 Interpretation of Regional Structure 17 LITHOLOGY AND PETROLOGY 32 Introduction 32 Transition Zone of the Valley Spring Gneiss-Packsaddle Schist 32 Packsaddle Schist . 38 Metamorphic Facies 53 Origin of the Packsaddle Schist 54 Metagabbro 59 Fine-Grained Granite 60 Pegmatites 6l Quartz-Feldspar Porphyry (Llanite) 6l Hickory sandstone 63 MINERALOGY ' 77 General 77 Hornblende 77 Plagioclase .
    [Show full text]
  • Guidebook to the Geology of Travis County.Pdf (4.815Mb)
    Page | 1 Guidebook to the Geology of Travis County: Preface Geology of the Austin Area, Travis County, Texas Keith Young When Robert T. Hill first came to Austin, Texas, as the first professor of geology, he described Austin and its surrounding area as an ideal site for a school of geology because it offered such varied outcrops representing rocks of many ages and varieties. Although Hill resigned his position about 85 years ago, the opportunities of the local geology have not changed. Hill (Hill, 1889) implies the intent of writing a series of papers to describe the geology of the local area for all who might be interested. The authors of this volume hope that they have fulfilled in large measure Hill's original intent. No product can ever be all things to all users, but we have presented here common geological phenomenon for many, including the description of an ancient volcano, the description of faulting that occurred in the Austin area in the past, a geologic history of the Austin area, a description of the local rocks, including their classification, field trips for interested observers of the geologic scene, collecting localities for the lovers of fossils, and resource places and agencies. We cannot emphasize enough that many unique geological phenomena are on private property. Please do not trespass, obtain permission. And if permission is not granted, observe from a distance. There are sufficient areas of geologic interest in the Austin area to please all without antagonizing landowners and making it even more difficult for the next person. Page | 2 Guidebook to the Geology of Travis County: Author's Note A useful guide to the geology of the Austin area has long been a goal.
    [Show full text]
  • Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas
    Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Copyright 2007 Todd B Housh, PhD, PG Round Rock, TX 78664 Cover photograph: The “Round Rock,” an erosional pedestal of Edward’s limestone that marked the low‐water crossing of Brushy Creek by the Chisholm Trail. 2 Table of Contents Introduction 5 Tectonic History 6 Previous Studies 8 Other Geologic Constraints 9 Stratigraphy 9 Comanche Series Fredericksburg Group Walnut Formation 10 Comanche Peak 10 Edwards 12 Kiamichi 13 Washita Group Georgetown 14 Del Rio 15 Buda 16 Gulf Series Woodbine Group Pepper 16 Eagle Ford Group 17 Austin Group 19 Taylor Group 21 Tertiary and Quaternary Systems Plio‐Pleistocene to Recent 22 Structure 23 Acknowledgements 27 Bibliography 28 Appendix 1. Compilation of sources of other geologic information. 34 Appendix 2. Localities of note to observe important geologic 40 features in the Round Rock Area. Appendix 3. Checklist of Cretaceous and Pleistocene fossils 45 3 4 Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Introduction The purpose of this study was to produce a map of the bedrock geology of the city of Round Rock, Texas and its environs and to evaluate the geologic structure of the area. Most of the City of Round Rock lies within the Round Rock 7.5 minute quadrangle, Williamson County, Texas1, although parts of the city also lie within the Pflugerville West 7.5 minute quadrangle, Travis County, Texas2 and the Hutto 7.5 minute quadrangle, Williamson County, Texas3.
    [Show full text]