3211320 Central Mixedgrass Prairie
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft Plant Propagation Protocol
Plant Propagation Protocol for Carex inops ESRM 412 – Native Plant Production TAXONOMY Family Names Family Scientific Name: Cyperaceae Family Common Name: Sedge Scientific Names Genus: Carex Species: inops Species Authority: L. H. Bailey Variety: Sub-species: Cultivar: Authority for Variety/Sub-species: Common Synonym(s) (include full CAINI3 Carex inops L.H. Bailey ssp inops scientific names (e.g., Elymus CAINH2 Carex inops ssp heliophila (Mack.) Crins glaucus Buckley), including variety Synonyms for ssp heliophila or subspecies information) CAER5 Carex erxlebeniana L. Kelso CAHE5 Carex heliophila Mack. CAPEH Carex pensylvanica Lam. ssp. Heliophila (Mack.) W.A. Weber CAPED Carex pensylvanica Lam. var. digyna Boeckeler Common Name(s): long-stolon sedge or sun sedge (ssp heliophila) Species Code (as per USDA Plants CAIN9 database): GENERAL INFORMATION Geographical range (distribution maps for North America and Washington state) http://plants.usda.gov/java/profile?symbol=CAIN9 http://plants.usda.gov/java/profile?symbol=CAIN9 Ecological distribution (ecosystems it Found in shortgrass, mixed, and tallgrass prairies, as occurs in, etc): well as Ponderosa pine communities and other woodlands (Fryer 2009) Climate and elevation range Dry to seasonally wet climates. Occasionally found at elevations > 5000 ft.(Fryer 2009) Local habitat and abundance; may May dominate to co-dominate in some systems. High include commonly associated prevelance and persistance even in systems where it is species not the dominant species. (Fryer 2009) Plant strategy -
Ecological Site Description Section L: Ecological Site Characteristics Ecological Site Identification and Concept
ESD Printable Report Page 1 of 56 United States Department of Agriculture Natural Resources Conservation Service Ecological Site Description Section l: Ecological Site Characteristics Ecological Site Identification and Concept Site stage: Provisional Provisional: an ESD at the provisional status represents the lowest tier of documentation that is releasable to the public. It contains a grouping of soil units that respond similarly to ecological processes. The ESD contains 1) enough information to distinguish it from similar and associated ecological sites and 2) a draft state and transition model capturing the ecological processes and vegetative states and community phases as they are currently conceptualized. The provisional ESD has undergone both quality control and quality assurance protocols. It is expected that the provisional ESD will continue refinement towards an approved status. Site name: Clayey / Pascopyrum smithii - Nassella viridula ( / western wheatgrass - green needlegrass) Site type: Rangeland Site ID: R058DY011SD Major land resource area (MLRA): 058D-Northern Rolling High Plains, Eastern Part https://esis.sc.egov.usda.gov/ESDReport/fsReportPrt.aspx?id=R058DY011SD&rptLevel=... 5/27/2016 ESD Printable Report Page 2 of 56 Physiographic Features This site occurs on nearly level to moderately steep uplands. Landform: (1) Terrace (2) Hill (3) Plain Minimum Maximum Elevation (feet): 2300 4000 Slope (percent): 0 6 Water table depth (inches): 80 80 Flooding Frequency: None None Ponding Frequency: None None Runoff class: High Very high Aspect: No Influence on this site Climatic Features https://esis.sc.egov.usda.gov/ESDReport/fsReportPrt.aspx?id=R058DY011SD&rptLevel=... 5/27/2016 ESD Printable Report Page 3 of 56 The climate in this MLRA is typical of the drier portions of the Northern Great Plains where sagebrush steppes to the west yield to grassland to the east. -
Mapping Prosopis Glandulosa (Mesquite) Invasion in the Arid Environment of South Africa Using Remote Sensing Techniques
Mapping Prosopis glandulosa (mesquite) invasion in the arid environment of South Africa using remote sensing techniques NYASHA FLORENCE MURERIWA 0604748V Supervisor: Dr Elhadi Adam A dissertation submitted to the School of Geography, Archaeology and Environmental Studies, Faculty of Science, University of the Witwatersrand in fulfilment of the academic requirements for the degree of Master of Science in Environmental Sciences March 2016 Johannesburg South Africa Abstract Decades after the first introduction of the Prosopis spp. (mesquite) to South Africa in the late 1800s for its benefits, the invasive nature of the species became apparent as its spread in regions of South Africa resulting in devastating effects to biodiversity, ecosystems and the socio- economic wellbeing of affected regions. Various control and management practices that include biological, physical, chemical and integrated methods have been tested with minimal success as compared to the rapid spread of the species. From previous studies, it has been noted that one of the reasons for the low success rates in mesquite control and management is a lack of sufficient information on the species invasion dynamic in relation to its very similar co-existing species. In order to bridge this gap in knowledge, vegetation species mapping techniques that use remote sensing methods need to be tested for the monitoring, detection and mapping of the species spread. Unlike traditional field survey methods, remote sensing techniques are better at monitoring vegetation as they can cover very large areas and are time-effective and cost- effective. Thus, the aim of this research was to examine the possibility of mapping and spectrally discriminating Prosopis glandulosa from its native co-existing species in semi-arid parts of South Africa using remote sensing methods. -
Taxonomic Revision of Genus Prosopis L. in Egypt
International Journal of Environment Volume : 04 | Issue : 01 | Jan-Mar. | 2015 ISSN: 2077-4508 Pages: 13-20 Taxonomic revision of genus Prosopis L. in Egypt Abd El Halim A. Mohamed and Safwat A. Azer Flora and Phytotaxonomy Researches Department, Horticultural Research Institute, Agricultural Research Center, Dokki, Giza, Egypt ABSTRACT The aim of this work was to survey the new record invasive alien Prosopis juliflora and clarifies the taxonomic relationships among genus Prosopis L. in Egypt. The wild species are Prosopis farcta (Banks & Sol.) Macbride and Prosopis juliflora (Sw.) DC. The cultivated species are Prosopis cineraria (L.) Druce; Prosopis glandulosa Torr. and Prosopis strombulifera (Lam.) Benth. Based on morphological traits, the numerical analysis divided the Prosopis species into three clusters. Cluster one included: Prosopis glandulosa and Prosopis juliflora. Cluster two included: Prosopis farcta and Prosopis cineraria. Cluster three included: Prosopis strombulifera. According to the degree of similarity, the species of cluster one had the highest ratio (75%) followed by (55.6%) between the species of cluster two. Moreover, the highest ratio (33.3%) was recorded between Prosopis strombulifera and Prosopis juliflora, while the lowest ratio (20.8%) was recorded between Prosopis strombulifera and Prosopis cineraria. This work recoded Prosopis juliflora to the Flora of Egypt. Key words: Taxonomy, Prosopis, alien species, numerical analysis, similarity level, Egypt. Introduction The genus Prosopis L. belongs to the family Leguminosae, subfamily Mimosoideae, tribe Mimosae (Burkart, 1976; Sherry et al., 2011). It comprises 44 species and five sections based on observed morphological differences among studied taxa (Burkart, 1976). The five sections included: Prosopis; Anonychium; Strombocarpa; Monilicarpa and Algarobia (Burkart, 1976; Landeras et al., 2004; Elmeer and Almalki, 2011). -
Mesquite Or Algarrobo
Screening Prosopis (Mesquite or Algarrobo) Abstract: Eighty collections of Prosopis have been screened in field experiments for biomass for Biofuel Production on Semiarid Lands1 production, frost tolerance, and heat/drought tol- erance. Selections have been examined in the greenhouse for nitrogen fixation and salinity tolerance in which one species grew on a nitrogen Peter Felker, Peter R. Clark, G. H. Cannell, and Joseph F. free media in salinities equivalent to seawater. Osborn2 A 44 percent sugar pod producer was identified and successfully fermented to ethanol by Avgeri- nos and Wang at MIT. Individual trees have grown 5 to 7 cm in basal diameter and 2 to 3.2 meters in height per year with 600 mm total water applica- tion. Dry matter production of 14,000 kg/ha has been obtained at projected harvested costs of $23.00 per ton or $1.35 per million Btu and com- pare favorably with natural gas, heating oil, and coal at $3.0, and $6.0, and $1.50 per million Btu's respectively. In many regions of the world, wood is an en- In the screening of new plants for biofuel ergy source that is locally available, decentral- production it is important not to rule out a ized, and requires little capital expenditure for particular natural ecosystem because of low pro- either acquisition or conversion to useful forms ductivity since the biomass productivity of nat- of energy. In the last 5-8 years these character- ural stands provides little insight into produc- istics have led wood to overtake nuclear energy as tivity possible for managed food or fuel produc- an energy source for the United States without tion systems. -
The Prosopis Juliflora - Prosopis Pallida Complex: a Monograph
DFID DFID Natural Resources Systems Programme The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA - the organic organisation The Prosopis juliflora - Prosopis pallida Complex: A Monograph NM Pasiecznik With contributions from P Felker, PJC Harris, LN Harsh, G Cruz JC Tewari, K Cadoret and LJ Maldonado HDRA Coventry UK 2001 organic organisation i The Prosopis juliflora - Prosopis pallida Complex: A Monograph Correct citation Pasiecznik, N.M., Felker, P., Harris, P.J.C., Harsh, L.N., Cruz, G., Tewari, J.C., Cadoret, K. and Maldonado, L.J. (2001) The Prosopis juliflora - Prosopis pallida Complex: A Monograph. HDRA, Coventry, UK. pp.172. ISBN: 0 905343 30 1 Associated publications Cadoret, K., Pasiecznik, N.M. and Harris, P.J.C. (2000) The Genus Prosopis: A Reference Database (Version 1.0): CD ROM. HDRA, Coventry, UK. ISBN 0 905343 28 X. Tewari, J.C., Harris, P.J.C, Harsh, L.N., Cadoret, K. and Pasiecznik, N.M. (2000) Managing Prosopis juliflora (Vilayati babul): A Technical Manual. CAZRI, Jodhpur, India and HDRA, Coventry, UK. 96p. ISBN 0 905343 27 1. This publication is an output from a research project funded by the United Kingdom Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. (R7295) Forestry Research Programme. Copies of this, and associated publications are available free to people and organisations in countries eligible for UK aid, and at cost price to others. Copyright restrictions exist on the reproduction of all or part of the monograph. -
Species List (PDF)
code gen spec genus species family growth formlife form origin photo 1 pascop smith pascopyrumsmithii poaceae p g n c3 2 androp gerar andropogongerardii poaceae p g n c4 3 schiza scopa schizachyriumscoparium poaceae p g n c4 4 boutel curti bouteloua curtipendulapoaceae p g n c4 5 boutel graci bouteloua gracilis poaceae p g n c4 6 boutel hirsu bouteloua hirsuta poaceae p g n c4 7 boutel dacty bouteloua dactyloidespoaceae p g n c4 8 chlori verti chloris verticillata poaceae p g n c4 9 elymus canad elymus canadensispoaceae p g n c3 10 elymus virgi elymus virginicus poaceae p g n c3 11 eragro spect eragrostis spectabilis poaceae p g n c4 12 koeler macra koeleria macrantha poaceae p g n c3 13 muhlen cuspi muhlenbergiacuspidata poaceae p g n c4 14 dichan oligo dichantheliumoligosanthespoaceae p g n c3 15 panicu virga panicum virgatum poaceae p g n c4 16 dichan ovale dichantheliumovale poaceae p g n c3 17 poa prate poa pratensis poaceae p g i c3 18 sorgha nutan sorghastrumnutans poaceae p g n c4 19 sparti pecti spartina pectinata poaceae p g n c4 20 spheno obtus sphenopholisobtusata poaceae p g n c3 21 sporob compo sporoboluscomposituspoaceae p g n c4 22 sporob crypt sporoboluscryptandruspoaceae p g n c4 23 sporob heter sporobolusheterolepispoaceae p g n c4 24 aristi oliga aristida oligantha poaceae a g n c4 25 bromus arven bromus arvensis poaceae a g i c3 26 bromus tecto bromus tectorum poaceae a g i c3 27 vulpia octof vulpia octoflora poaceae a g n c3 28 hordeu pusil hordeum pusillum poaceae a g n c3 29 panicu capil panicum capillare poaceae a g n c4 30 schedo panic schedonnarduspaniculatuspoaceae p g n c4 31 carex brevi carex brevior cyperaceaep s n . -
A Vegetation Map of the Valles Caldera National Preserve, New
______________________________________________________________________________ A Vegetation Map of the Valles Caldera National Preserve, New Mexico ______________________________________________________________________________ A Vegetation Map of Valles Caldera National Preserve, New Mexico 1 Esteban Muldavin, Paul Neville, Charlie Jackson, and Teri Neville2 2006 ______________________________________________________________________________ SUMMARY To support the management and sustainability of the ecosystems of the Valles Caldera National Preserve (VCNP), a map of current vegetation was developed. The map was based on aerial photography from 2000 and Landsat satellite imagery from 1999 and 2001, and was designed to serve natural resources management planning activities at an operational scale of 1:24,000. There are 20 map units distributed among forest, shrubland, grassland, and wetland ecosystems. Each map unit is defined in terms of a vegetation classification that was developed for the preserve based on 348 ground plots. An annotated legend is provided with details of vegetation composition, environment, and distribution of each unit in the preserve. Map sheets at 1:32,000 scale were produced, and a stand-alone geographic information system was constructed to house the digital version of the map. In addition, all supporting field data was compiled into a relational database for use by preserve managers. Cerro La Jarra in Valle Grande of the Valles Caldera National Preserve (Photo: E. Muldavin) 1 Final report submitted in April 4, 2006 in partial fulfillment of National Prak Service Award No. 1443-CA-1248- 01-001 and Valles Caldrea Trust Contract No. VCT-TO 0401. 2 Esteban Muldavin (Senior Ecologist), Charlie Jackson (Mapping Specialist), and Teri Neville (GIS Specialist) are with Natural Heritage New Mexico of the Museum of Southwestern Biology at the University of New Mexico (UNM); Paul Neville is with the Earth Data Analysis Center (EDAC) at UNM. -
Biological Survey of a Prairie Landscape in Montana's Glaciated
Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report Prepared for: Bureau of Land Management Prepared by: Stephen V. Cooper, Catherine Jean and Paul Hendricks December, 2001 Biological Survey of a Prairie Landscape in Montanas Glaciated Plains Final Report 2001 Montana Natural Heritage Program Montana State Library P.O. Box 201800 Helena, Montana 59620-1800 (406) 444-3009 BLM Agreement number 1422E930A960015 Task Order # 25 This document should be cited as: Cooper, S. V., C. Jean and P. Hendricks. 2001. Biological Survey of a Prairie Landscape in Montanas Glaciated Plains. Report to the Bureau of Land Management. Montana Natural Heritage Pro- gram, Helena. 24 pp. plus appendices. Executive Summary Throughout much of the Great Plains, grasslands limited number of Black-tailed Prairie Dog have been converted to agricultural production colonies that provide breeding sites for Burrow- and as a result, tall-grass prairie has been ing Owls. Swift Fox now reoccupies some reduced to mere fragments. While more intact, portions of the landscape following releases the loss of mid - and short- grass prairie has lead during the last decade in Canada. Great Plains to a significant reduction of prairie habitat Toad and Northern Leopard Frog, in decline important for grassland obligate species. During elsewhere, still occupy some wetlands and the last few decades, grassland nesting birds permanent streams. Additional surveys will have shown consistently steeper population likely reveal the presence of other vertebrate declines over a wider geographic area than any species, especially amphibians, reptiles, and other group of North American bird species small mammals, of conservation concern in (Knopf 1994), and this alarming trend has been Montana. -
EASTERN REDCEDAR (Juniperus Virginiana) EXPANSION, EFFECTS, and CONTROL
EASTERN REDCEDAR (Juniperus virginiana) EXPANSION, EFFECTS, AND CONTROL A LITERATURE REVIEW FROM THE TALLGRASS PRAIRIE REGION OF THE CENTRAL U.S. Eastern redcedar burning, photo by Dirac Twidwell A collaborative product from the Great Plains Fire Science Exchange and Tallgrass Prairie and Oak Savanna Fire Science Consortium Written by: Tracy L. Hmielowski [email protected] Great Plains Pub # GPE 2014-17 Tallgrass Prairie Pub # TPOS LR02-2014 Page 1 of 14 Tallgrass prairie ecosystems in the United States are priorities for conservation of Key Points grassland communities. While much of the Changes in wildland fire regime have tallgrass prairie in the Great Plains and upper led to an expansion of eastern Midwest has been converted to cropland or redcedar in tallgrass prairie. other developments, some areas still support native prairie species (Samson and Knopf 1994). Increased eastern redcedar leads to Less than 4% of the original tallgrass prairie decreased herbaceous biodiversity, remains (Samson and Knopf 1994). In addition decreased forage production, and to the threats of expanding urban development increased Wildland Urban Interface and agriculture, many of these open grasslands concerns. are being invaded by woody species (Briggs et Prescribed fire is most effective for al. 2005). One tree species of concern in this controlling small trees, or change to woody dominance is eastern maintaining sites where eastern redcedar (Juniperus virginiana; hereafter cedar is not a problem; mechanical redcedar) a rapidly expanding evergreen treatments may be necessary for common throughout the eastern United States. In this document, we focus on the expansion of dealing with larger trees. redcedar (Fig. -
Phylogenetic Analyses of Juniperus Species in Turkey and Their Relations with Other Juniperus Based on Cpdna Supervisor: Prof
MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AYSUN DEMET GÜVENDİREN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGY APRIL 2015 Approval of the thesis MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA submitted by AYSUN DEMET GÜVENDİREN in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Department of Biological Sciences, Middle East Technical University by, Prof. Dr. Gülbin Dural Ünver Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan Adalı Head of the Department, Biological Sciences Prof. Dr. Zeki Kaya Supervisor, Dept. of Biological Sciences METU Examining Committee Members Prof. Dr. Musa Doğan Dept. Biological Sciences, METU Prof. Dr. Zeki Kaya Dept. Biological Sciences, METU Prof.Dr. Hayri Duman Biology Dept., Gazi University Prof. Dr. İrfan Kandemir Biology Dept., Ankara University Assoc. Prof. Dr. Sertaç Önde Dept. Biological Sciences, METU Date: iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Aysun Demet GÜVENDİREN Signature : iv ABSTRACT MOLECULAR PHYLOGENETIC ANALYSES OF JUNIPERUS L. SPECIES IN TURKEY AND THEIR RELATIONS WITH OTHER JUNIPERS BASED ON cpDNA Güvendiren, Aysun Demet Ph.D., Department of Biological Sciences Supervisor: Prof. -
Flora Vol 3 FC
PLANTS+ OF THE BLACK RANGE OF NEW MEXICO Volume Three Arranged by english common name This checklist recognizes the plant collecting efforts of Anna Isabel Mulford in the Black Range during 1895. PLANTS+ OF THE BLACK RANGE OF NEW MEXICO An Annotated Checklist Edition One of Volume three This checklist of the plants (including a few lichen and other Black Range website, a search for specimen sheets was non-plant species) of the Black Range of southwestern New conducted; Mexico draws from a variety of sources. It is a work in progress and undoubtedly contains errors. If you encounter ✦ If a specimen sheet from the Black Range was located errors of substantive omission or commission or for the species, an entry noting this was made in the administrative errors (broken or incorrect links, spelling, notes column. The name of the collector and the etc.) please let me know at [email protected] so that general location where the specimen was collected the errors can be corrected in the second edition. Your help was entered in the notes column as a link to the in this manner will be of benefit to the general community. specimen sheet. Such entries are shown in dark blue. Methodology ✦ Species which are not verified for the Black Range are indicated by a light blue “cell filling” in the first cell in This checklist was put together in the following manner: the species row. ✦ A search of the SEINet data base (Arizona & New Mexico Chapters) was conducted to determine the Disclaimers and possible species in the Black Range; Points of Clarification ✦ A preliminary search of the Consortium of North In some cases, you may note that an entry from the Vascular American Lichen Herbaria data base was conducted to Plants of the Gila Wilderness data base has been entered on determine possible species in the Black Range (this the checklist but the initial cell of the species listing is filled work is incomplete); in light blue indicating that the species was not verified for the Black Range following the process described above.