Final Southern Edwards Plateau Habitat Conservation Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Look at the Texas Hill Country Following the Path We Are on Today Through 2030
A Look at the Texas Hill Country Following the path we are on today through 2030 This unique and special region will grow, but what will the Hill Country look like in 2030? Growth of the Hill Country The Hill Country Alliance (HCA) is a nonprofit organization whose purpose is to raise public awareness and build community support around the need to preserve the natural resources and heritage of the Central Texas Hill Country. HCA was formed in response to the escalating challenges brought to the Texas Hill Country by rapid development occurring in a sensitive eco-system. Concerned citizens began meeting in September of 2004 to share ideas about strengthening community activism and educating the public about regional planning, conservation development and a more responsible approach growth in the Hill Country. This report was prepared for the Texas Hill Country Alliance by Pegasus Planning 2 Growth of the Hill Country 3 Growth of the Hill Country Table of Contents Executive Summary Introduction The Hill Country Today The Hill Country in 2030 Strategic Considerations Reference Land Development and Provision of Utilities in Texas (a primer) Organizational Resources Materials Reviewed During Project End Notes Methodology The HCA wishes to thank members of its board and review team for assistance with this project, and the authors and contributors to the many documents and studies that were reviewed. September 2008 4 Growth of the Hill Country The Setting The population of the 17-County Hill Country region grew from approximately 800,000 in 1950 (after the last drought on record) to 2.6 million in 2000. -
Curriculum Vitae
DANIELLE WALKUP Post-Doctoral Research Associate, Natural Resources Institute, Texas A&M University College Station, TX 77843-2258 Email: [email protected] Education Texas A&M University – College Station, Texas Ph.D. – Wildlife and Fisheries Science – December 2018 Western New Mexico University - Silver City, New Mexico M.A.T. - Secondary Education - May 2010 B.S. - Forestry & Wildlife - May 2008 Research Experience Texas A&M University, College Station, TX Post-doctoral Research Associate Aug 2018 - Present Graduate Research Assistant Aug 2013 – Aug 2015; May 2016 – Dec 2016 Research Assistant Apr – Sept 2011; Apr 2012 – Aug 2013 • 2012-2016 – Led mark-recapture studies with project PIs, organized field operations, maintained equipment and schedules, analyzed data, prepared publications and technical reports, trained and supervised field technicians • 2011-13 - Led pitfall trapping studies with project PIs, conducted mark-recapture studies, supervised project logistics Western New Mexico University, Silver City, NM Assistant to P.I Feb – Dec 2013 • Assisted in designing the post-fire plant survey protocol in comparative survey sites in the Gila National Forest • Collected, identified and preserved vegetation from established survey sites Biological Field Manager Oct 2012 – Apr 2013 • Analyzed data; writing reports and papers on Common Blackhawk data collected from 2010-2012 • Data entry and analysis of Cliff-Gila Valley bird surveys Biology Field Assistant May-Aug 2009; May- Aug 2010; Apr-Dec 2011 • In plots along the Gila River, used a GPS to mark locations of Southwestern Willow Flycatchers, Yellow-Billed Cuckoos, Common Blackhawks, and other birds • Surveyed and identified populations of Southwestern Willow Flycatchers, identifying breeding males and territories • Assisted in writing summary reports of Southwestern Willow Flycatcher and Common Blackhawk monitoring results for distribution to the U.S. -
Wildlife Populations in Texas
Wildlife Populations in Texas • Five big game species – White-tailed deer – Mule deer – Pronghorn – Bighorn sheep – Javelina • Fifty-seven small game species – Forty-six migratory game birds, nine upland game birds, two squirrels • Sixteen furbearer species (i.e. beaver, raccoon, fox, skunk, etc) • Approximately 900 terrestrial vertebrate nongame species • Approximately 70 species of medium to large-sized exotic mammals and birds? White-tailed Deer Deer Surveys Figure 1. Monitored deer range within the Resource Management Units (RMU) of Texas. 31 29 30 26 22 18 25 27 17 16 24 21 15 02 20 28 23 19 14 03 05 06 13 04 07 11 12 Ecoregion RMU Area (Ha) 08 Blackland Prairie 20 731,745 21 367,820 Cross Timbers 22 771,971 23 1,430,907 24 1,080,818 25 1,552,348 Eastern Rolling Plains 26 564,404 27 1,162,939 Ecoregion RMU Area (Ha) 29 1,091,385 Post Oak Savannah 11 690,618 Edwards Plateau 4 1,308,326 12 475,323 5 2,807,841 18 1,290,491 6 583,685 19 2,528,747 7 1,909,010 South Texas Plains 8 5,255,676 28 1,246,008 Southern High Plains 2 810,505 Pineywoods 13 949,342 TransPecos 3 693,080 14 1,755,050 Western Rolling Plains 30 4,223,231 15 862,622 31 1,622,158 16 1,056,147 39,557,788 Total 17 735,592 Figure 2. Distribution of White-tailed Deer by Ecological Area 2013 Survey Period 53.77% 11.09% 6.60% 10.70% 5.89% 5.71% 0.26% 1.23% 4.75% Edwards Plateau Cross Timbers Western Rolling Plains Post Oak Savannah South Texas Plains Pineywoods Eastern Rolling Plains Trans Pecos Southern High Plains Figure 3. -
Spot-Tailed Earless Lizard Update: January 2017
Spot-Tailed Earless Lizard Update: January 2017 Travis LaDuc Roel Lopez UT Austin Texas A&M Brad Wolaver Wade Ryberg UT Austin Texas A&M Mike Duran Toby Hibbitts The Nature Conservancy Texas A&M Ben Labay Matt Fujita UT Austin UT Arlington Jon Paul Pierre Corey Roelke UT Austin UT Arlington Ian Wright UT Austin Gautam Surya UT Austin Cody Shank UT Austin Photo by Mike Duran Thursday, January 26, 2017 Goals and Agenda Update of scien7fic progress since Sept. 2016 Discussion of ongoing research Findings So Far 1. Field data update for 2016 2. Insect survey update 3. Gene7cs status 4. Habitat modeling 1. Status 2. Road bias 3. Ground-truthing + possible addi7onal research… Study Area 2015 Surveys • April 22 – Sept 24 • 274 surveys in 57 counes • 18 coun7es with posive H. lacerata surveys • 174 H. lacerata observed 2016 Surveys • April 6 – Sept 28 • 171 surveys in 28 counes • 53 surveys in 7 coun7es with posive H. lacerata surveys • 170 H. lacerata observed • 91 animals marked; 2 recaptures 2016 Surveys • 171 surveys (April 6 – August 26) • 52 walking; 18 lizards seen (0.04 lizards/hr) • 119 driving; 152 lizards seen (0.30 lizards/hr) • 28 counes across historical range • Areas of 2015 sigh7ngs • Historical range where no 2015 sigh7ngs • 170 Holbrookia lacerata sighted • No new coun7es with H. lacerata from 2015 (save Suon Co.) • Juveniles observed in every unit 2016 Surveys • Mark-recapture: • 91 individuals iden7fied (all photographed, 61 toe-clipped) • Two recaptures • Combinaon road and walking surveys Diet / Insect Surveys Diet data obtained -
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Ecoregions of Texas
Ecoregions of Texas 23 Arizona/New Mexico Mountains 26 Southwestern Tablelands 30 Edwards Plateau 23a Chihuahuan Desert Slopes 26a Canadian/Cimarron Breaks 30a Edwards Plateau Woodland 23b Montane Woodlands 26b Flat Tablelands and Valleys 30b Llano Uplift 24 Chihuahuan Deserts 26c Caprock Canyons, Badlands, and Breaks 30c Balcones Canyonlands 24a Chihuahuan Basins and Playas 26d Semiarid Canadian Breaks 30d Semiarid Edwards Plateau 24b Chihuahuan Desert Grasslands 27 Central Great Plains 31 Southern Texas Plains 24c Low Mountains and Bajadas 27h Red Prairie 31a Northern Nueces Alluvial Plains 24d Chihuahuan Montane Woodlands 27i Broken Red Plains 31b Semiarid Edwards Bajada 24e Stockton Plateau 27j Limestone Plains 31c Texas-Tamaulipan Thornscrub 25 High Plains 29 Cross Timbers 31d Rio Grande Floodplain and Terraces 25b Rolling Sand Plains 29b Eastern Cross Timbers 25e Canadian/Cimarron High Plains 29c Western Cross Timbers 25i Llano Estacado 29d Grand Prairie 25j Shinnery Sands 29e Limestone Cut Plain 25k Arid Llano Estacado 29f Carbonate Cross Timbers 25b 26a 26a 25b 25e Level III ecoregion 26d 300 60 120 mi Level IV ecoregion 26a Amarillo 27h 60 0 120 240 km County boundary 26c State boundary Albers equal area projection 27h 25i 26b 25j 27h 35g 35g 26b Wichita 29b 35a 35c Lubbock 26c Falls 33d 27i 29d Sherman 35a 25j Denton 33d 35c 32a 33f 35b 25j 26b Dallas 33f 35a 35b 27h 29f Fort 35b Worth 33a 26b Abilene 32c Tyler 29b 24c 29c 35b 23a Midland 26c 30d 35a El Paso 24a 23b Odessa 35b 24a 24b 25k 27j 33f Nacogdoches 24d Waco Pecos 25j -
An Inventory of a Subset of Historically Known Populations of The
Section 6 (Texas Traditional) Report Review Form emailed to FWS S6 coordinator (mm/dd/yyyy): 9/11/2017 TPWD signature date on report: 8/31/2017 Project Title: To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Final or Interim Report? Final Grant #: TX-E-165-R Reviewer Station: Austin ESFO Lead station concurs with the following comments: NA (reviewer from lead station) Interim Report (check one): Final Report (check one): Acceptable (no comments) Acceptable (no comments) Needs revision prior to final report (see Needs revision (see comments below) comments below) Incomplete (see comments below) Incomplete (see comments below) Comments: FINAL PERFORMANCE REPORT As Required by THE ENDANGERED SPECIES PROGRAM TEXAS Grant No. TX E-165-R (F14AP00824) Endangered and Threatened Species Conservation An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata) Prepared by: Mike Duran Carter Smith Executive Director Clayton Wolf Director, Wildlife 31 August 2017 Final Report TPWD Contract #458178—31 August 2017 FINAL REPORT STATE: ____Texas_______________ GRANT NUMBER: ___ TX E-165-R-1__ GRANT TITLE: An Inventory of a Subset of Historically Known Populations of the Spot-tailed Earless Lizard (Holbrookia lacerata). REPORTING PERIOD: ____1 September 2014 to 31 August 2017 OBJECTIVE(S). To provide more evidence for the presence/absence of the southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis; STEL) in southern Texas. Segment Objectives: Task 1. March 1 – June 30, 2015 – Spring surveys. Task 2. September 15 – October 31, 2015 – Fall surveys. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax)
U.S. Fish and Wildlife Service Public Affairs Office PO Box 1306 News Release Albuquerque, NM 87103 505/248-6911 505/248-6915 (Fax) Southwest Region (Arizona ● New Mexico ● Oklahoma ●Texas) www.fws.gov/southwest/ For Release: May 23, 2011 Contacts: Alisa Shull, (512) 490-0057 Lesli Gray, (972) 569-8588 THE SPOT-TAILED EARLESS LIZARD MAY WARRANT PROTECTION UNDER THE ENDANGERED SPECIES ACT The spot-tailed earless lizard (Holbrookia lacerata) may warrant federal protection as a threatened or endangered species, the U.S. Fish and Wildlife Service (Service) announced today, following an initial review of a petition seeking to protect the spot-tailed earless lizard under the Endangered Species Act (ESA). The Service finds that the petition presents substantial scientific or commercial information indicating that listing the spot-tailed earless lizard may be warranted. This finding is based on potential threats posed by predation from fire ants. Fire ants are known to adversely impact native fauna in general, including reptiles. Fire ants occur across a large part of the spot-tailed earless lizard’s range and may pose a threat through direct predation on adults, hatchlings and eggs. The spot-tailed earless lizard is divided into two distinct subspecies, based on morphological (physical) differences and geographic separation. The northern spot-tailed earless lizard subspecies (Holbrookia lacerata lacerata) historically occurred throughout the Edwards Plateau in Texas. The southern spot-tailed earless lizard (Holbrookia lacerata subcaudalis) historically occurred through south Texas into parts of Mexico’s States of Coahuila, Nuevo Leon, and Tamaulipas. The present population of the spot-tailed earless lizard’s population status is largely unknown. -
Section IV – Guideline for the Texas Priority Species List
Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication). -
A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion
A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion June 2004 © The Nature Conservancy This document may be cited as follows: The Nature Conservancy. 2004. A Biodiversity and Conservation Assessment of the Edwards Plateau Ecoregion. Edwards Plateau Ecoregional Planning Team, The Nature Conservancy, San Antonio, TX, USA. Acknowledgements Jasper, Dean Keddy-Hector, Jean Krejca, Clifton Ladd, Glen Longley, Dorothy Mattiza, Terry The results presented in this report would not have Maxwell, Pat McNeal, Bob O'Kennon, George been possible without the encouragement and Ozuna, Jackie Poole, Paula Power, Andy Price, assistance of many individuals and organizations. James Reddell, David Riskind, Chuck Sexton, Cliff Most of the day-to-day work in completing this Shackelford, Geary Shindel, Alisa Shull, Jason assessment was done by Jim Bergan, Bill Carr, David Singhurst, Jack Stanford, Sue Tracy, Paul Turner, O. Certain, Amalie Couvillion, Lee Elliott, Aliya William Van Auken, George Veni, and David Wolfe. Ercelawn, Mark Gallyoun, Steve Gilbert, Russell We apologize for any inadvertent omissions. McDowell, Wayne Ostlie, and Ryan Smith. Finally, essential external funding for this work This project also benefited significantly from the came from the Department of Defense and the U. S. involvement of several current and former Nature Army Corps of Engineers through the Legacy Grant Conservancy staff including: Craig Groves, Greg program. Without this financial support, many of the Lowe, Robert Potts, and Jim Sulentich. Thanks for critical steps in the planning process might not have the push and encouragement. Our understanding of ever been completed. Thank you. the conservation issues important to the Edwards Plateau was greatly improved through the knowledge and experiences shared by many Conservancy staff including Angela Anders, Gary Amaon, Paul Barwick, Paul Cavanagh, Dave Mehlman, Laura Sanchez, Dan Snodgrass, Steve Jester, Bea Harrison, Jim Harrison, and Nurani Hogue. -
The Ecology of Lizard Reproductive Output
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2011) ••, ••–•• RESEARCH The ecology of lizard reproductive PAPER outputgeb_700 1..11 Shai Meiri1*, James H. Brown2 and Richard M. Sibly3 1Department of Zoology, Tel Aviv University, ABSTRACT 69978 Tel Aviv, Israel, 2Department of Biology, Aim We provide a new quantitative analysis of lizard reproductive ecology. Com- University of New Mexico, Albuquerque, NM 87131, USA and Santa Fe Institute, 1399 Hyde parative studies of lizard reproduction to date have usually considered life-history Park Road, Santa Fe, NM 87501, USA, 3School components separately. Instead, we examine the rate of production (productivity of Biological Sciences, University of Reading, hereafter) calculated as the total mass of offspring produced in a year. We test ReadingRG6 6AS, UK whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environ- mental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phyloge- netic relationships and multiple life history and ecological variables from the lit- erature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product – productivity – is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size.