18. Geologic Terms and Geographic Divisions

Total Page:16

File Type:pdf, Size:1020Kb

18. Geologic Terms and Geographic Divisions 18. Geologic Terms and Geographic Divisions Geologic terms For capitalization, compounding, and use of quotations in geologic terms, copy is to be followed. Geologic terms quoted verbatim from published ma- terial should be left as the original author used them; however, it should be made clear that the usage is that of the original author. Formal geologic terms are capitalized: Proterozoic Eon, Cambrian Period. Structural terms such as arch, anticline, or uplift are capitalized when pre- ceded by a name: Cincinnati Arch, Cedar Creek Anticline, Ozark Uplift . See Chapter 4 geographic terms for more information. Divisions of Geologic Time [Most recent to oldest] Eon Era Period Phanerozoic ................ Cenozoic ............................ Quarternary. Tertiary (Neogene, Paleogene). Mesozoic........................... Cretaceous. Jurassic. Triassic. Paleozoic .......................... Permian. Carboniferous (Pennsylvanian, Mississippian). Devonian. Silurian. Ordovician. Cambrian. Proterozoic ................. Neoproterozoic ............... Ediacaran. Cryogenian. Tonian. Mesoproterozoic ............. Stenian. Ectasian. Calymmian. Paleoproterozoic ............. Statherian. Orosirian. Rhyacian. Siderian. Archean ....................... Neoarchean. Mesoarchean. Paleoarchean. Eoarchean. Hadean. Source: Information courtesy of the U.S. Geological Survey; for graphic see http://pubs.usgs.gov/fs/2007/3015/ fs2007-3015.pdf. 343 cchapter18.inddhapter18.indd 334343 111/13/081/13/08 3:19:233:19:23 PPMM 344 Chapter 18 Physiographic regions Physiographic regions are based on terrain texture, rock type, and geologic structure and history. Th e classifi cation system has three tiers: divisions, which are broken into provinces, and some provinces break further into sec- tions. All names are capitalized, not the class; for graphic see http://tapestry. usgs.gov/physiogr/physio.html. Physiographic Regions of the Lower 48 United States Division Province Section Laurentian Upland ...................... Superior Upland. Atlantic Plain ................................ Continental Shelf. Coastal Plain .................................. Embayed. Sea Island. Floridian. East Gulf Coastal Plain. Mississippi Alluvial Plain. West Gulf Coastal Plain. Appalachian Highlands ............. Piedmont ....................................... Piedmont Upland. Piedmont Lowlands. Blue Ridge ...................................... Northern. Southern. Valley and Ridge ........................... Tennessee. Middle. Hudson Valley. St. Lawrence Valley ...................... Champlain. Northern. Appalachian Plateaus .................. Mohawk. Catskill. Southern New York. Allegheny Mountain. Kanawha. Cumberland Plateau. Cumberland Mountain. New England ................................. Seaboard Lowland. New England Upland. White Mountain. Green Mountain. Taconic. Adirondack. Interior Plains ............................... Interior Low Plateaus ................... Highland Rim. Lexington Plain. Nashville Basin. Central Lowland ........................... Eastern Lake. Western Lake. Wisconsin Drift less. Till Plains. Dissected Till Plains. Osage Plains. cchapter18.inddhapter18.indd 334444 111/13/081/13/08 3:19:233:19:23 PPMM Geologic Terms and Geographic Divisions 345 Division Province Section Great Plains .................................... Missouri Plateau, glaciated. Missouri Plateau, unglaciated. Black Hills. High Plains. Plains Border. Colorado Piedmont. Raton. Pecos Valley. Edwards Plateau. Central Texas. Interior Highlands ....................... Ozark Plateaus............................... Springfi eld-Salem Plateaus. Boston “Mountains.” Ouachita ......................................... Arkansas Valley. Ouachita Mountains. Rocky Mountain System ............ Southern Rocky Mountains. Wyoming Basin. Middle Rocky Mountains. Northern Rocky Mountains. Intermontane Plateaus ............... Columbia Plateau ........................ Walla Walla Plateau. Blue Mountain. Payette. Snake River Plain. Harney. Colorado Plateaus ........................ High Plateaus of Utah. Uinta Basin. Canyon Lands. Navajo. Grand Canyon. Datil. Basin and Range ........................... Great Basin. Sonoran Desert. Salton Trough. Mexican Highland. Sacramento. Pacifi c Mountain System ............ Cascade-Sierra Mountains ......... Northern Cascade Mountains. Middle Cascade Mountains. Southern Cascade Mountains. Sierra Nevada. Pacifi c Border ................................ Puget Trough. Olympic Mountains. Oregon Coast Range. Klamath Mountains. California Trough. California Coast Ranges. Los Angeles Ranges. Lower California. Source: Information courtesy of the U.S. Geological Survey. cchapter18.inddhapter18.indd 334545 111/13/081/13/08 3:19:233:19:23 PPMM 346 Chapter 18 Geographic divisions Th e Public Land Survey System has a hierarchy of lines. Principal merid- ians and base lines and their related townships, sections, and subdivisions of sections are incorporated in the description of land conveyed by the Federal Government and others. The Principal Meridians and Base Lines of the United States 1 Black Hills Meridian and Base Line. New Mexico Principal Meridian and Base (South Dakota) Line. (New Mexico-Colorado) Boise Meridian and Base Line. (Idaho) Point of Beginning and Geographer’s Chickasaw Meridian and Base Line. Line. (Ohio) (Mississippi-Tennessee) Principal Meridian and Base Line. Choctaw Meridian and Base Line. (Mississippi) (Montana) Cimarron Meridian and Base Line. Salt Lake Meridian and Base Line. (Utah) (Oklahoma) San Bernardino Meridian and Base Line. Copper River Meridian and Base Line. (Alaska) (California-Nevada) Fairbanks Meridian and Base Line. (Alaska) Second Principal Meridian and Base Line. Fift h Principal Meridian and Base Line. (Illinois-Indiana) (Arkansas-Iowa-Minnesota-Missouri- Seward Principal Meridian and Base Line. North Dakota-South Dakota) (Alaska) First Principal Meridian and Base Line. Sixth Principal Meridian and Base Line. (Ohio-Indiana) (Colorado-Kansas-Nebraska-South Fourth Principal Meridian and Base Line. Dakota-Wyoming) (Illinois) St. Helena Meridian and Base Line. Fourth Principal Meridian and Base Line (Louisiana) Wisconsin. (Minnesota-Wisconsin) St. Stephens Meridian and Base Line. Gila and Salt River Meridian and Base Line. (Alabama-Mississippi) (Arizona) Tallahassee Meridian and Base Line. Humboldt Meridian and Base Line. (Florida) (California) Th ird Principal Meridian and Base Line. Huntsville Meridian and Base Line. (Illinois) (Alabama-Mississippi) Uintah Special Meridian and Base Line. Indian Meridian and Base Line. (Oklahoma) (Utah) Kateel River Principal Meridian and Base Umiat Principal Meridian and Base Line. Line. (Alaska) (Alaska) Louisiana Meridian and Base Line. Ute Principal Meridian and Base Line. (Louisiana-Texas) (Colorado) Michigan Meridian and Base Line. Washington Meridian and Base Line. (Michigan-Ohio) (Mississippi) Mount Diablo Meridian and Base Line. Willamette Meridian and Base Line. (California-Nevada) (Oregon-Washington) Navajo Meridian and Base Line. (Arizona- Wind River Meridian and Base Line. New Mexico) (Wyoming) 1 Information courtesy of the U.S. Department of the Interior, Bureau of Land Management. Geologic Terms and Geographic Divisions 347 Public Land Surveys Having No Initial Point as an Origin for Both Township and Range Numbers 1 Between the Miamis, north of Symmes Purchase. Scioto River Base. (Ohio) (Ohio) Twelve-Mile-Square Reserve. (Ohio) Muskingum River Survey. (Ohio) United States Military Survey. (Ohio) Ohio River Base. (Indiana) West of the Great Miami. (Ohio) Ohio River Survey. (Ohio) 1 Information courtesy of the U.S. Department of the Interior, Bureau of Land Management. Sources: Manual of Instructions for the Survey of the Public Lands of the United States, Bureau of Land Management, GPO; Initial Points of the Rectangular Survey System, C. Albert White, 1996. See http://www.blm.gov/wo/st/en/prog/more/cadastralsurvey.html for more information on prinicipal meridians and base lines. Major Rivers of the World Length Length River (in miles) River (in miles) Nile (Africa) ............................................... 4,160 MacKenzie (Canada) .......................... 2,635 Amazon (S. America) ............................... 4,000 Mekong (Vietnam) .............................. 2,600 Yangtze (China) ........................................ 3,964 Niger (Africa) ....................................... 2,590 Yellow (China) ........................................... 3,395 Yenisey (Russia) ................................... 2,543 Ob-Irtysh (Russia) .................................... 3,362 Missouri (U.S.) ..................................... 2,540 Amur (Asia) ............................................... 2,744 Parana (S. America) ............................ 2,485 Lena (Russia) .............................................. 2,734 Mississippi (U.S.) ................................. 2,340 Congo (Africa) ........................................... 2,718 Murray-Darling (Australia) .............. 2,310 Note.—Information compiled from numerous public domain Web sites; references cite diff erent lengths for the same river depending on origin. Major Rivers of the United States Length Length River (in miles) River (in miles) Missouri ...................................................... 2,540 Ohio ......................................................... 1,310 Mississippi .................................................. 2,340 Red ........................................................... 1,290
Recommended publications
  • Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama
    Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Interpretation of Cumberland Escarpment and Highland Rim, South-Central Tennessee and Northeast Alabama By JOHN T. HACK SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 524-C Theories of landscape origin are compared using as an example an area of gently dipping rocks that differ in their resistance to erosion UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract___________________________________________ C1 Cumberland Plateau and Highland Rim as a system in Introduction_______________________________________ 1 equilibrium______________________________________ C7 General description of area___________________________ 1 Valleys and coves of the Cumberland Escarpment___ 7 Cumberland Plateau and Highland Rim as dissected and Surficial deposits of the Highland Rim____________ 10 deformed peneplains _____________________ ,... _ _ _ _ _ _ _ _ 4 Elk River profile_______________________________ 12 Objections to the peneplain theory____________________ 5 Paint Rock Creek profile________________________ 14 Eastern Highland Rim Plateau as a modern peneplain__ 6 Conclusions________________________________________ 14 Equilibrium concept
    [Show full text]
  • Chapter 40. Appalachian Planation Surfaces
    Chapter 40 Appalachian Planation Surfaces The Appalachian region not only includes the mountains, but also the surrounding provinces. During the erosion episode (see Chapter 8 and Appendix 4), rocks of the Appalachians were sometimes planed into a flat or nearly flat planation surface, especially on the provinces east and west of the Blue Ridge Mountains (Figure 40.1). But planation surfaces are also found in the Appalachian Mountains, mainly on the mountaintops. Figure 40.1. Map of the Appalachian provinces and the two provinces to the west (from Aadland et al., 1992). Due to their rolling and dissected morphology, the Appalachian provinces are rarely called planation surfaces, but they would mostly be erosion surfaces. I will continue to use the more descriptive term, planation surface, with the understanding that many of these are erosion surfaces. The Appalachian provinces exhibit three possible planation surfaces, from east to west, they include: (1) the Piedmont Province, (2) the accordant mountaintops of the Valley and Ridge Province (part of the Appalachian Mountains), and (3) the Appalachian Plateau which is divided into the Allegheny Plateau in the north and the Cumberland Plateau in the south. I also will include the Interior Low Plateaus Province to the west of the Appalachian Plateau. Many articles have been published about the Appalachian planation surface. Their origin is controversial among secular geologists, but they can readily be explained by the runoff of the global Genesis Flood. Figure 40.2. Lake on the Piedmont near Parkersville, South Carolina, showing general flatness of the terrain. The Piedmont Planation Surface The Piedmont Province begins just east of the Blue Ridge Mountains from the Hudson River in the north to Alabama in the south.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Temperature Variability in the Bay of Biscay During the Past 40 Years, from an in Situ Analysis and a 3D Global Simulation
    ARTICLE IN PRESS Continental Shelf Research 29 (2009) 1070–1087 Contents lists available at ScienceDirect Continental Shelf Research journal homepage: www.elsevier.com/locate/csr Temperature variability in the Bay of Biscay during the past 40 years, from an in situ analysis and a 3D global simulation S. Michel a,Ã, A.-M. Treguier b, F. Vandermeirsch a a Dynamiques de l’Environnement Coˆtier/Physique Hydrodynamique et Se´dimentaire, IFREMER, BP 70, 29280 Plouzane´, France b Laboratoire de Physique des Oce´ans, CNRS-IFREMER-IRD-UBO, BP 70, 29280 Plouzane´, France article info abstract Article history: A global in situ analysis and a global ocean simulation are used jointly to study interannual to decadal Received 21 June 2008 variability of temperature in the Bay of Biscay, from 1965 to 2003. A strong cooling is obtained at all Received in revised form depths until the mid-1970’s, followed by a sustained warming over 30 years. Strong interannual 21 November 2008 fluctuations are superimposed on this slow evolution. The fluctuations are intensified at the surface and Accepted 27 November 2008 are weakest at 500 m. A good agreement is found between the observed and simulated temperatures, Available online 6 February 2009 in terms of mean values, interannual variability and time correlations. Only the decadal trend is Keywords: significantly underestimated in the simulation. A comparison to satellite sea surface temperature (SST) Bay of Biscay data over the last 20 years is also presented. The first mode of interannual variability exhibits a quasi- Interannual temperature variability uniform structure and is related to the inverse winter North Atlantic Oscillation (NAO) index.
    [Show full text]
  • A Community Effort Towards an Improved Geological Time Scale
    A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department
    [Show full text]
  • SPIDER in the RIVER: a COMPARATIVE ENVIRONMENTAL HISTORY of the IMPACT of the CACHE LA POUDRE WATERSHED on CHEYENNES and EURO- AMERICANS, 1830-1880 John J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, & Student Research, History, Department of Department of History Spring 4-21-2015 SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO- AMERICANS, 1830-1880 John J. Buchkoski University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/historydiss Part of the Cultural History Commons, and the United States History Commons Buchkoski, John J., "SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880" (2015). Dissertations, Theses, & Student Research, Department of History. 83. http://digitalcommons.unl.edu/historydiss/83 This Article is brought to you for free and open access by the History, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, & Student Research, Department of History by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880 By John J. Buchkoski A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Arts Major: History Under the Supervision of Professor Katrina L. Jagodinsky Lincoln, Nebraska April, 2015 SPIDER IN THE RIVER: A COMPARATIVE ENVIRONMENTAL HISTORY OF THE IMPACT OF THE CACHE LA POUDRE WATERSHED ON CHEYENNES AND EURO-AMERICANS, 1830-1880 John Buchkoski, M.A.
    [Show full text]
  • ST. CHARLES 7.5' QUADRANGLE Qslt 0 5 4 ST
    90°22'30"W 90°30'00"W 90°27'30"W 90°25'00"W R 5 E R 6 E 38°52'30"N 38°52'30"N 31 32 33 34 35 36 31 35 SURFICIAL MATERIAL GEOLOGIC MAP OF THE ST. CHARLES 7.5' QUADRANGLE Qslt 0 5 4 ST. CHARLES AND ST. LOUIS COUNTIES, MISSOURI 0 45 Qslt 2 Geology and Digital Compilation by 0 45 Qtd David A. Gaunt and Bradley A. Mitchell Qcly «¬94 3 5 6 5 4 2011 Qslt Qtd Qtd Qtd 1 Graus «¬94 Lake OFM-11-593-GS 6 «¬H Qtd 6 Croche 9 10 MISSOURI DEPARTMENT OF NATURAL RESOURCES 8 7 s DIVISION OF GEOLOGY AND LAND SURVEY ai ar 7 M GEOLOGICAL SURVEY PROGRAM Qslt Qtd P.O. BOX 250, ROLLA MO 65402-0250 12 www.dnr.mo.gov/geology B «¬ Qslt 573-368-2100 7 13 THIS MAP WAS PRODUCED UNDER A COOPERATIVE 0 5 AGREEMENT WITH THE UNITED STATES GEOLOGICAL 4 18 38°50'00"N 38°50'00"N SURVEY Qtd Permission must be obtained to visit privately owned land Qslt Qslt PHYSIOGRAPHY 0 5 4 St. Charles County D St. Louis County The St. Charles quadrangle includes part of the large floodplain of the Missouri River and loess covered uplands. N 500 550 A L The floodplain is up to five miles wide in this area. The quadrangle lies within the Dissected Till Plains Section 50 S 5 I 45 6 0 0 0 of the Central Lowland Province of the Interior Plains Physiographic Division.
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • The Public Land Survey System for the Cadastral Mapper
    THE PUBLIC LAND SURVEY SYSTEM FOR THE CADASTRAL MAPPER FLORIDA ASSOCIATION OF CADASTRAL MAPPERS In conjunction with THE FLORIDA DEPARTMENT OF REVENUE Proudly Presents COURSE 2 THE PUBLIC LAND SURVEY SYSTEM FOR THE CADASTRAL MAPPER Objective: Upon completion of this course the student will: Have an historical understanding of the events leading up to the PLSS. Understand the basic concepts of Section, Township, and Range. Know how to read and locate a legal description from the PLSS. Have an understanding of how boundaries can change due to nature. Be presented with a basic knowledge of GPS, Datums, and Map Projections. Encounter further subdividing of land thru the condominium and platting process. Also, they will: Perform a Case Study where the practical applications of trigonometry and coordinate calculations are utilized to mathematically locate the center of the section. *No part of this book may be used or reproduced in any matter whatsoever without written permission from FACM www.FACM.org Table Of Contents Course Outline DAY ONE MONDAY MORNING - WHAT IS THE PLSS? A. INTRODUCTION AND OVERVIEW TO THE PLSS……………………………..…………1-2 B. SURVEYING IN COLONIAL AMERICA PRIOR TO THE PLSS………………...……..1-3 C. HISTORY OF THE PUBLIC LAND SURVEY SYSTEM…………………………….….…..1-9 1. EDMUND GUNTER……………………………………………………….………..…..…..……1-10 2. THE LAND ORDINANCE OF 1785…………………………………………..………….……..1-11 3. MAP OF THE SEVEN RANGES…………………………………….……………………………1-15 D. HOW THE PUBLIC LAND SURVEY SYSTEM WORKS………..………………………1-18 1. PLSS DATUM………..…………………………………………………….………………1-18 2. THE TOWNSHIP………..………………………………………………….………………1-18 DAY 1 MORNING REVIEW QUESTIONS……………………………………………..1-20 i Table Of Contents MONDAY AFTERNOON – SECTION TOWNSHIP RANGE A.
    [Show full text]
  • Major Geographic Regions and Popula on of the United States of America
    Major geographic regions and populaon of the United States of America Major geographic regions and populaon of the United States of America Lesson plan (Polish) Lesson plan (English) Major geographic regions and populaon of the United States of America Link to the lesson Before you start you should know that the United Stated is an economically developed country; that the United States is an immigrant country founded mainly by immigrants from Europe and slaves brought from Africa; that a region’s natural environment influences its economic development. You will learn to show the great regions on a map of the United States; to name the major population groups inhabiting the United States; to name the reasons for the decline of the Native American culture. Nagranie dostępne na portalu epodreczniki.pl Nagranie dźwiękowe abstraktu Major geographic regions of the United States of America The United States of America is the fourth largest country in the world, with a surface area of 9,526,5 thousand sq. km, and the third most populous one, with 322 million inhabitants in 2010. This vast country is made up of continental states that lie in the central part of the North American continent, between the 25th parallel north and the 49th parallel north. Two more states, Alaska in the northwest extremity of North America and Hawaii in the Pacific Ocean, are located outside the main part of the United States. One of the crucial features of the natural environment of the United States is the meridional layout of its major geographic regions, which differ in altitude above sea level and landscape.
    [Show full text]
  • Pleistocene Geology of Eastern South Dakota
    Pleistocene Geology of Eastern South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Pleistocene Geology of Eastern South Dakota By RICHARD FOSTER FLINT GEOLOGICAL SURVEY PROFESSIONAL PAPER 262 Prepared as part of the program of the Department of the Interior *Jfor the development-L of*J the Missouri River basin UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1955 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $3 (paper cover) CONTENTS Page Page Abstract_ _ _____-_-_________________--_--____---__ 1 Pre- Wisconsin nonglacial deposits, ______________ 41 Scope and purpose of study._________________________ 2 Stratigraphic sequence in Nebraska and Iowa_ 42 Field work and acknowledgments._______-_____-_----_ 3 Stream deposits. _____________________ 42 Earlier studies____________________________________ 4 Loess sheets _ _ ______________________ 43 Geography.________________________________________ 5 Weathering profiles. __________________ 44 Topography and drainage______________________ 5 Stream deposits in South Dakota ___________ 45 Minnesota River-Red River lowland. _________ 5 Sand and gravel- _____________________ 45 Coteau des Prairies.________________________ 6 Distribution and thickness. ________ 45 Surface expression._____________________ 6 Physical character. _______________ 45 General geology._______________________ 7 Description by localities ___________ 46 Subdivisions. ________-___--_-_-_-______ 9 Conditions of deposition ___________ 50 James River lowland.__________-__-___-_--__ 9 Age and correlation_______________ 51 General features._________-____--_-__-__ 9 Clayey silt. __________________________ 52 Lake Dakota plain____________________ 10 Loveland loess in South Dakota. ___________ 52 James River highlands...-------.-.---.- 11 Weathering profiles and buried soils. ________ 53 Coteau du Missouri..___________--_-_-__-___ 12 Synthesis of pre- Wisconsin stratigraphy.
    [Show full text]
  • The Environmental History of Sand Creek Massacre National Historic Site
    CENTER FOR PUBLIC HISTORY AND ARCHAEOLOGY COLORADO STATE UNIVERSITY The Environmental History of Sand Creek Massacre National Historic Site Final Draft Elizabeth Michell July 31 2009 An abbreviated version intended as guide for visitors OYL/iJ INTRODUCTION On late spring day visitor stands on slight rise on the banks of Big Sandy Creek from where across Cheyenne chief Black Kettles village once stood whole lot of he nothing comments laconically It is quiet place its peacefulness giving it timeless But quality the visitor is wrong and the timelessness is deceptive You can never visit the past again The Sand Creek Massacre National Historic Site is in southeastern fifteen Colorado about miles northeast of the small town of Eads This is high plains country dusty and flat the drab greens of grass and scrub melding into the relentless browns of desiccated vegetation sand and soil The surrounding landscape is crisscrossed dirt by trails and fence lines dotted with windmills outbuildings and stock watering tanks At the site groves of cottonwoods tower along the gently sloping banks of Big Sandy Creek in fact it would be difficult to follow the stream course without the line of trees For most of the year water does not flow and the creek bed is choked with sand sagebrushes and other the site dry prairie species Though is part of shortgrass most of the land is prairie actually sandy bottomland that may eventually become It in Black Kettles tallgrass prairie was dry time and it is still dry evident by how much more sagebrush species there are now
    [Show full text]