Towards a Phylogenetic Nomenclature of Tracheophyta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
Physiochemical and Antibacterial Characterization of Fruits of Three Chilean Trees
72 Fruits (2), 87–96 | ISSN 0248-1294 print, 1625-967X online | https://doi.org/10.17660/th.2017/72.2.4 | © ISHS 2017 Original article Citronella mucronata (Cardiopteridaceae), Pitavia punctata (Rutaceae)Physiochemical and Beilschmiediaand antibacterial berteroana characterization (Lauraceae), of fruits three of endemic and threatened Chilean trees , G.F. Narváez2, M.F. Morales3 3 4 and C.R. Figueroa 1 5,a F.A.12 Sáez , H.M. Bello , C. Balbontín 3 Master Program in Forest Sciences, Faculty of Forest Sciences, University of Concepción, Concepción, Chile 4 Faculty of Forest Sciences, University of Concepción, Concepción, Chile Research Lab of Antibacterial Agents, Faculty of Biological Sciences, University of Concepción, Concepción, Chile 5 Small Fruits and Berry Crops Research, Institute for Agricultural Research (INIA)-Quilamapu, Chillán, Chile Phytohormone Research Laboratory, Institute of Biological Sciences, University of Talca, Talca, Chile Summary Significance of this study Introduction – Several native tree species are What is already known on this subject? scarcely studied in relation to fruit properties. In or- • Citronella mucronata, Pitavia punctata and Beilschmie- der to bring about information of these plant resourc- dia berteroana are threatened endemic trees of central es, the characterization of ripening-associated prop- erties of the fruit of three endemic and threatened studied. Chilean trees (Citronella mucronata, Pitavia punctata Chile whose fruit properties have been scarcely and Beilschmiedia berteroana) was performed in the What are the new findings? present study. Materials and methods – The physio- • C. mucronata and P. punctata chemical characterization of two developmental fruit a high amount of pectin and bacteriostatic effect, stages in each species included the measurement of fruits extracts showed soluble solid content (SSC), titratable acidity (TA), pH, for both fruits. -
The Origin and Early Evolution of Vascular Plant Shoots and Leaves Rstb.Royalsocietypublishing.Org C
Downloaded from http://rstb.royalsocietypublishing.org/ on January 22, 2018 The origin and early evolution of vascular plant shoots and leaves rstb.royalsocietypublishing.org C. Jill Harrison 1 and Jennifer L. Morris 2 1School of Biological Sciences, and 2School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Review CJH, 0000-0002-5228-600X; JLM, 0000-0002-7453-3841 Cite this article: Harrison CJ, Morris JL. 2017 The morphology of plant fossils from the Rhynie chert has generated long- standing questions about vascular plant shoot and leaf evolution, for The origin and early evolution of vascular plant instance, which morphologies were ancestral within land plants, when did shoots and leaves. Phil. Trans. R. Soc. B 373 : vascular plants first arise and did leaves have multiple evolutionary origins? 20160496. Recent advances combining insights from molecular phylogeny, palaeobotany http://dx.doi.org/10.1098/rstb.2016.0496 and evo–devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relat- Accepted: 11 August 2017 ing to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in One contribution of 18 to a discussion meeting the evolution of leaves from branching forms in ‘telome theory’ hypotheses issue ‘The Rhynie cherts: our earliest terrestrial of leaf evolution. This review discusses fossil, developmental and genetic ecosystem revisited’. evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework. This article is part of a discussion meeting issue ‘The Rhynie cherts: our Subject Areas: earliest terrestrial ecosystem revisited’. -
Getting to the Roots: a Developmental Genetic View of Root Anatomy and Function from Arabidopsis to Lycophytes
fpls-09-01410 September 21, 2018 Time: 17:3 # 1 REVIEW published: 25 September 2018 doi: 10.3389/fpls.2018.01410 Getting to the Roots: A Developmental Genetic View of Root Anatomy and Function From Arabidopsis to Lycophytes Frauke Augstein and Annelie Carlsbecker* Department of Organismal Biology, Physiological Botany and Linnean Centre for Plant Biology in Uppsala, Uppsala University, Uppsala, Sweden Roots attach plants to the ground and ensure efficient and selective uptake of water and nutrients. These functions are facilitated by the morphological and anatomical structures of the root, formed by the activity of the root apical meristem (RAM) and consecutive patterning and differentiation of specific tissues with distinct functions. Despite the importance of this plant organ, its evolutionary history is not clear, but fossils suggest that roots evolved at least twice, in the lycophyte (clubmosses and their allies) and in the euphyllophyte (ferns and seed plants) lineages. Both lycophyte and euphyllophyte roots grow indeterminately by the action of an apical meristem, which is protected by a root cap. They produce root hairs, and in most species the vascular stele is Edited by: guarded by a specialized endodermal cell layer. Hence, most of these traits must have Annette Becker, evolved independently in these lineages. This raises the question if the development Justus Liebig Universität Gießen, Germany of these apparently analogous tissues is regulated by distinct or homologous genes, Reviewed by: independently recruited from a common ancestor of lycophytes and euphyllophytes. Hongchang Cui, Currently, there are few studies of the genetic and molecular regulation of lycophyte Florida State University, United States and fern roots. -
Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe. -
HELWINGIACEAE 1. HELWINGIA Willdenow, Sp
Flora of China 14: 227–229. 2005. HELWINGIACEAE 青荚叶科 qing jia ye ke Xiang Qiuyun (向秋云 Jenny Xiang)1; David E. Boufford2 Shrubs, rarely small trees, dioecious, evergreen or deciduous. Leaves simple, alternate, petiolate, stipulate; stipules 2, early deciduous, divided or not; blade margins glandular serrate or crenate; veins pinnate. Inflorescences umbels, sessile, borne on midvein of leaf blade, rarely on petiole of leaves on upper part of young branches. Flowers 3- or 4(or 5)-merous, green or purple-green, uni- sexual; calyx teeth 3 or 4(or 5); petals 3 or 4(or 5); floral disk flat, fleshy. Staminate flowers 3–20 per umbel; stamens 3 or 4(or 5), alternate petals; anther locules 2. Carpellate flowers 1–4 per umbel; style short; stigma lobes 3 or 4(or 5), reflexed; ovary inferior, locules 3 or 4(or 5); ovules 1 per locule, pendulous, apotropous, with dorsal raphe. Fruit berries, drupelike. Seeds (stones) 1–4(or 5), with grooves and ridges when dry, crowned by persistent calyx and style; endosperm smooth; embryo straight. One genus and four species: Bhutan, China, N India, Japan, S Korea, N Myanmar, Nepal, Sikkim, Thailand, N Vietnam; four species (one en- demic) in China. Soong Tzepu. 1990. Helwingia. In: Fang Wenpei & Hu Wenkuang, eds., Fl. Reipubl. Popularis Sin. 56: 20–35. 1. HELWINGIA Willdenow, Sp. Pl. 4: 634, 716. 1806, nom. cons., not Helvingia Adanson (1763). 青荚叶属 qing jia ye shu Shrubs evergreen or deciduous, 1–2 m tall, rarely small trees to 8 m tall. Leaves petiolate; petiole rounded; leaf blade linear-lan- ceolate to broadly ovate, papery, subleathery, or leathery, glabrous or pubescent; veins 5–9, inconspicuous or conspicuous. -
Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str. -
Embryophytic Sporophytes in the Rhynie and Windyfield Cherts
Transactions of the Royal Society of Edinburgh: Earth Sciences http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Earth Sciences: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Embryophytic sporophytes in the Rhynie and Windyeld cherts Dianne Edwards Transactions of the Royal Society of Edinburgh: Earth Sciences / Volume 94 / Issue 04 / December 2003, pp 397 - 410 DOI: 10.1017/S0263593300000778, Published online: 26 July 2007 Link to this article: http://journals.cambridge.org/abstract_S0263593300000778 How to cite this article: Dianne Edwards (2003). Embryophytic sporophytes in the Rhynie and Windyeld cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, pp 397-410 doi:10.1017/S0263593300000778 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 131.251.254.13 on 25 Feb 2014 Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 397–410, 2004 (for 2003) Embryophytic sporophytes in the Rhynie and Windyfield cherts Dianne Edwards ABSTRACT: Brief descriptions and comments on relationships are given for the seven embryo- phytic sporophytes in the cherts at Rhynie, Aberdeenshire, Scotland. They are Rhynia gwynne- vaughanii Kidston & Lang, Aglaophyton major D. S. Edwards, Horneophyton lignieri Barghoorn & Darrah, Asteroxylon mackiei Kidston & Lang, Nothia aphylla Lyon ex Høeg, Trichopherophyton teuchansii Lyon & Edwards and Ventarura lyonii Powell, Edwards & Trewin. The superb preserva- tion of the silica permineralisations produced in the hot spring environment provides remarkable insights into the anatomy of early land plants which are not available from compression fossils and other modes of permineralisation. -
David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
American Journal of Botany 96(1): 96–109. 2009. O NE SIZE FITS ALL? M OLECULAR EVIDENCE FOR A COMMONLY INHERITED PETAL IDENTITY PROGRAM IN RANUNCULALES 1 David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 USA Petaloid organs are a major component of the fl oral diversity observed across nearly all major clades of angiosperms. The vari- able morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplifi ed by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3 ) and PISTILLATA (PI ) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specifi c across both Ranunculaceae and Berberidaceae. We conclude from this fi nding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological defi nitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms. Key words: APETALA3 ; MADS box genes; petal evolution; PISTILLATA ; Ranunculales. -
Ornamental Garden Plants of the Guianas Pt. 2
Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.