David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approaches and Limitations of Species Level Diagnostics in Flowering Plants
Genetic Food Diagnostics Approaches and Limitations of Species Level Diagnostics in Flowering Plants Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Dipl. Biologe Thomas Horn aus 77709 Wolfach Dekan: Prof. Dr. Peter Roesky Referent: Prof. Dr. Peter Nick Korreferent: Prof. Dr. Horst Taraschewski Tag der mündlichen Prüfung: 17.04.2014 Parts of this work are derived from the following publications: Horn T, Völker J, Rühle M, Häser A, Jürges G, Nick P; 2013; Genetic authentication by RFLP versus ARMS? The case of Moldavian Dragonhead (Dracocephalum moldavica L.). European Food Research and Technology, doi 10.1007/s00217-013-2089-4 Horn T, Barth A, Rühle M, Häser A, Jürges G, Nick P; 2012; Molecular Diagnostics of Lemon Myrtle (Backhousia citriodora versus Leptospermum citratum). European Food Research and Technology, doi 10.1007/s00217-012-1688-9 Also included are works from the following teaching projects: RAPD Analysis and SCAR design in the TCM complex Clematis Armandii Caulis (chuān mù tōng), F2 Plant Evolution, 2011 Effects of highly fragmented DNA on PCR, F3, Lidija Krebs, 2012 1 I. Acknowledgement “Nothing is permanent except change” Heraclitus of Ephesus Entering adolescence – approximately 24 years ago – many aspects of life pretty much escaped my understanding. After a period of turmoil and subsequent experience of a life as laborer lacking an education, I realized that I did not want to settle for this kind of life. I wanted to change. With this work I would like to thank all people that ever bothered trying to explain the world to me, that allowed me to find my way and nurtured my desire to change. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Lenka Kočková
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Diplomová práce Lenka Kočková Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Brno 2012 Bibliografický záznam Autor: Bc. Lenka Kočková Přírodovědecká fakulta, Masarykova univerzita, Ústav botaniky a zoologie Název práce: Velikost genomu a poměr bazí v genomu v čeledi Ranunculaceae Studijní program: Biologie Studijní obor: Systematická biologie a ekologie (Botanika) Vedoucí práce: Doc. RNDr. Petr Bureš, Ph. D. Akademický rok: 2011/2012 Počet stran: 104 Klíčová slova: Ranunculaceae, průtoková cytometrie, PI/DAPI, DNA obsah, velikost genomu, GC obsah, zastoupení bazí, velikost průduchů, Pignattiho indikační hodnoty Bibliographic Entry Author: Bc. Lenka Kočková Faculty of Science, Masaryk University, Department of Botany and Zoology Title of Thesis: Genome size and genomic base composition in Ranunculaceae Programme: Biology Field of Study: Systematic Biology and Ecology (Botany) Supervisor: Doc. RNDr. Petr Bureš, Ph. D. Academic Year: 2011/2012 Number of Pages: 104 Keywords: Ranunculaceae, flow cytometry, PI/DAPI, DNA content, genome size, GC content, base composition, stomatal size, Pignatti‘s indicator values Abstrakt Pomocí průtokové cytometrie byla změřena velikost genomu a AT/GC genomový poměr u 135 druhů z čeledi Ranunculaceae. U druhů byla naměřena délka a šířka průduchů a z literatury byly získány údaje o počtu chromozomů a ekologii druhů. Velikost genomu se v rámci čeledi liší 63-krát. Nejmenší genom byl naměřen u Aquilegia canadensis (2C = 0,75 pg), největší u Ranunculus lingua (2C = 47,93 pg). Mezi dvěma hlavními podčeleděmi Ranunculoideae a Thalictroideae je ve velikosti genomu markantní rozdíl (2C = 2,48 – 47,94 pg a 0,75 – 4,04 pg). -
Mechanical Architecture and Development in Clematis
Research MechanicalBlackwell Publishing Ltd. architecture and development in Clematis: implications for canalised evolution of growth forms S. Isnard1, T. Speck2 and N. P. Rowe1 1Botanique et Bioinformatique de l’Architecture des Plantes, UMR 5120 CNRS, TA40/PS2, Boulevard de la Lironde, 34398 Montpellier, France; 2Plant Biomechanics Group, Institute for Biology II, Botanical Garden of the Albert-Ludwigs-Universität, Schänzlestrasse 1, D-79104 Freiburg, Germany Summary Author for correspondence: • Mechanical architectures of two Clematis species, the herbaceous perennial S. Isnard Clematis recta and the woody liana, Clematis vitalba, were investigated and + Tel: 33 (0) 467617553 compared with the woody rhizomatous sand dune plant Clematis flammula var. Fax: +33 (0) 467615668 Email: [email protected] maritima. • Bending mechanical properties of stems from various developmental stages were Received: 25 September 2002 compared and related to stem geometry and relative proportions of tissues during Accepted: 28 February 2003 development. doi: 10.1046/j.1469-8137.2003.00771.x • Clematis vitalba and C. flammula var. maritima showed mechanical architectures with reductions in structural Young’s modulus of the stem during ontogeny. Irrever- sible loss of stem rigidity was mediated by disruption, separation and eventual loss of primary phloem fibres via secondary growth of the periderm and cambial activity. Each species showed variations of non-self-supporting mechanical architecture relating to specific habitat preferences. In aerial stems of C. recta the structural Young’s modulus remained approximately constant during ontogeny, a mechanical signal characteristic for semi-self-supporting architectures. •Woody aerial plant stems are extremely rare in the Ranunculaceae and seldom, if ever, show self-supporting characteristics. -
Open-Centred Dahlias Sue Drew Trriiallss Recorrderr,, RHS Garrden Wiisslley
RHHSS PLAANNTT TRIALSS BULLLEETIN Numberr 24 Seepttemmbbeerr 22000099 Open-centred Dahlias Sue Drew Trriiallss Recorrderr,, RHS Garrden Wiisslley www.rhs.org.uk The RHS Trial of Dahlias Trial Objectives Trials are conducted as part of the RHS’s charitable mission to inform, educate, and inspire gardeners. The aim of the Dahlia Trial is to compare, demonstrate and evaluate a range of cultivars submitted by individuals and nurserymen. The Trial History of the Trial also allows for plants to be correctly named, described, Brent Elliott, Historian, RHS Lindley Library photographed, and mounted in the herbarium, providing an Dahlias were just being introduced into England at the time archive for the future. Cultivars are referred for further when the Horticultural Society (later to become the RHS) was assessment in the Trial. Following assessment in trial, those founded. John Wedgwood, one of the Society’s founders, was meeting the required standard receive the RHS Award of an enthusiastic grower of dahlias, and published an article on Garden Merit (AGM). them in the first volume of the Society’s Transactions . When the regular sequence of flower shows was begun at the Society’s garden at Chiswick in 1831, there were seven The Award of Garden Merit competitions set for their respective seasons, with the dahlia The Award of Garden Merit is only awarded to plants that are: competition taking place in September. ⅷ Excellent for ordinary garden use After the founding of the Floral Committee in 1859, a ⅷ Available programme of plant trials was begun, the trials taking ⅷ Of good constitution place at the Society’s garden at Chiswick. -
Fragrant Annuals Fragrant Annuals
TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety JanuaryJanuary // FebruaryFebruary 20112011 New Plants for 2011 Unusual Trees with Garden Potential The AHS’s River Farm: A Center of Horticulture Fragrant Annuals Legacies assume many forms hether making estate plans, considering W year-end giving, honoring a loved one or planting a tree, the legacies of tomorrow are created today. Please remember the American Horticultural Society when making your estate and charitable giving plans. Together we can leave a legacy of a greener, healthier, more beautiful America. For more information on including the AHS in your estate planning and charitable giving, or to make a gift to honor or remember a loved one, please contact Courtney Capstack at (703) 768-5700 ext. 127. Making America a Nation of Gardeners, a Land of Gardens contents Volume 90, Number 1 . January / February 2011 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM THE AHS 2011 Seed Exchange catalog online for AHS members, new AHS Travel Study Program destinations, AHS forms partnership with Northeast garden symposium, registration open for 10th annual America in Bloom Contest, 2011 EPCOT International Flower & Garden Festival, Colonial Williamsburg Garden Symposium, TGOA-MGCA garden photography competition opens. 40 GARDEN SOLUTIONS Plant expert Scott Aker offers a holistic approach to solving common problems. 42 HOMEGROWN HARVEST page 28 Easy-to-grow parsley. 44 GARDENER’S NOTEBOOK Enlightened ways to NEW PLANTS FOR 2011 BY JANE BERGER 12 control powdery mildew, Edible, compact, upright, and colorful are the themes of this beating bugs with plant year’s new plant introductions. -
Plant List 2011
! Non-Arboretum members who spend $25 at Saturday’s Plant Sale receive a coupon for a future free visit to the Arboretum! (One per Person) University of Minnesota ASTILBE chinensis ‘Veronica Klose’ (False Spirea)--18-24” Intense red-purple plumes. Late summer. Shade Perennials ASTILBE chinensis ‘Vision in Pink’ (False Spirea)--18” Sturdy, upright pink plumes. Blue-green foliage. M. Interest in Shade Gardening continues to grow as more homeowners are finding ASTILBE chinensis ‘Vision in Red’ (False Spirea)--15” Deep red buds open their landscapes becoming increasingly shady because of the growth of trees and to pinky-red flowers. Bronze-green foliage. July. shrubs. Shade plants are those that require little or no direct sun, such as those in ASTILBE chinensis ‘Vision in White’ (False Spirea)--18-24” Large creamy- northern exposures or under trees or in areas where the sun is blocked for much of the white plumes. Smooth, glossy, green foliage. July. day. Available from us are many newly introduced plants and old favorites which can ASTILBE chinensis ‘Visions’ (False Spirea)--15” Fragrant raspberry-red add striking foliage and appealing flowers to brighten up your shade garden plumes. Deep green foliage. M. You will find Shade Perennials in the SHADE BUILDING. ASTILBE japonica ‘Montgomery’ (False Spirea)--22” Deep orange-red ACTAEA rubra (Red Baneberry)--18”Hx12’W Clumped bushy appearance. In spring plumes on dark red stems. M. bears fluffy clusters of small white flowers producing shiny red berries which are toxic. ASTILBE simplicifolia ‘Key Largo’ (False Spirea)--15-20” Reddish-pink flow- ers on red stems. -
Reproductive Morphology of Sargentodoxa Cuneata (Lardizabalaceae) and Its Systematic Implications
Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. By: Hua-Feng Wang, Bruce K. Kirchoff and Zhi-Xin Zhu Wang, H.-F., Kirchoff, B. K., Qin, H.-N., Zhu, Z.-X. 2009. Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. Plant Systematics and Evolution 280: 207–217. Made available courtesy of Springer-Verlag. The original publication is available at http://link.springer.com/article/10.1007%2Fs00606-009-0179-3. ***Reprinted with permission. No further reproduction is authorized without written permission from Springer-Verlag. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document. *** Abstract: The reproductive morphology of Sargentodoxa cuneata (Oliv) Rehd. et Wils. is investigated through field, herbarium, and laboratory observations. Sargentodoxa may be either dioecious or monoecious. The functionally unisexual flowers are morphologically bisexual, at least developmentally. The anther is tetrasporangiate, and its wall, of which the development follows the basic type, is composed of an epidermis, endothecium, two middle layers, and a tapetum. The tapetum is of the glandular type. Microspore cytokinesis is simultaneous, and the microspore tetrads are tetrahedral. Pollen grains are two-celled when shed. The mature ovule is crassinucellate and bitegmic, and the micropyle is formed only by the inner integument. Megasporocytes undergo meiosis resulting in the formation of four megaspores in a linear tetrad. The functional megaspore develops into an eight-nucleate embryo sac after three rounds of mitosis. The mature embryo sac consists of an egg apparatus (an egg and two synergids), a central cell, and three antipodal cells. -
Title Insect-Flower Relationship in the Temperate Deciduous Forest Of
Insect-flower Relationship in the Temperate Deciduous Forest Title of Kibune, Kyoto : An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits INOUE, Tamiji; KATO, Makoto; KAKUTANI, Takehiko; Author(s) SUKA, Takeshi; ITINO, Takao Contributions from the Biological Laboratory, Kyoto Citation University (1990), 27(4): 377-464 Issue Date 1990-08-20 URL http://hdl.handle.net/2433/156100 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contr. biol, Lab. Kyoto Univ,, Vol. 27, pp. 377-463 Issued 20 August 1990 Insect-flower Relationship in the Temperate Deciduous 'Forest of Kibune, Kyoto: An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits' Tamiji INouE, Makoto KATo, Takehiko KAKuTANi, Takeshi SuKA and Takao IT[No ABSTRACT In 1984 -1987, insect visitors to fiowers werebimonthly or weekly surveyed on a total of 115 plant species or 49 families in the temperate deciduous forest of Kibune, Kyoto, Japan. Flowering was observed from early April to early November, The number of plant species that concurrently bloomed was nine to 17 from May to September. Themonthly total number of flowering plant species peaked twice in May (34 spp.) and September (33 spp,). From April to August, floweringperiods werestaggered arnong congeneric woody species, e.g., Lindera, Rubus, Hydrangea and Deutzia. A total of 4603 individuals of 889 species in 12 orders of Insecta and 2 orders of Arachnoidea were collected. The most abundant order was Hymeno- ptera (46 O/o of the total number of individuals), and it was followed by Diptera (30 O/o) and Coleoptera (140/o). -
Clematis and 3352 N Service Dr
Clematis and 3352 N Service Dr. Red Wing, MN 55066 www.sargentsnursery.com Pruning P: 651-388-3847 E: [email protected] UMN Extension, Karl Foord Clematis is a genus that is best known for its vining members that produce large, colorful, showy flowers. This is at best only half of the truth. In fact many of the cultivars do produce spectacular flowers with colors from almost all 360 degrees in the gardener’s color wheel. In addition there are varieties with smaller nodding flowers that add a certain delicacy to the garden as well as some herbaceous types that are more shrub-like and die back to the ground each year. Clematis require a certain effort to make them thrive but it is well worth the effort. The dizzying array of cultivars can be intimidating, but this can be simplified by categorizing plant types by when they set their flower buds. This will then determine when they will flower and how they should be pruned. As such, the categories are often labeled as pruning groups. Group A (1) In this group flower buds are initiated on this year’s vine in July and then produce flowers in the late spring of the following year. If you prune off old wood you also prune off flower buds. So if you have a clematis vine and do not know the variety, observe its time of flowering. Those that flower before early summer are likely in this group. Pruning of this type should only serve to maintain the framework. Do so only after flowering and before July. -
Newsletter Volume 31:4 May 2020
Newsletter Volume 31:4 May 2020 Message from the President In This Issue: Wendy Wilson, CVRS President for May Ken Gibson’s Tofino Garden 2 Hi Friends, Letter from the Editor 3 May has always been my favorite month of the year. We are in Erroneous Epithet 5 our busiest and most exciting time of the season as far as our gardens are concerned. Our time is consumed with weeding, One of a Kind: Trochodendron raking, planting, fertilizing, mulching, planning new garden beds, aralioides 7 and gazing through books and magazines for new ideas on how A Garden of Spectacular to improve old garden beds. Remember to take a step back and “Specials” 8 admire your hard work and creativity and take a moment to enjoy all of the beauty that you have accomplished instead of seeing all In a Forest Near You 9 that still needs to be done. My Rhodi’s Too Big 10 Carrie Nelson’s Garden 13 Rhododendron mallotum 14 Sandra’s Special Fragrant Rhododendron: Rhododendron ‘Else Frye” 15 Malcolm Ho’s Paeoneae 16 Bernie Dinter’s Reds 16 CVRS Truss Show 17 2019-20 Executive 18 Prunus x yedoensis ‘Akebono’ Cowichan Valley Rhododendron Society 1 May 2020 In my own garden, I am trying to correct many years improve on old ones. I miss the oohing and aahing of neglect now that I have recently retired. My over a spectacular plant, flower or garden. And I excuse for the neglect is fifteen years of commuting. miss wandering along moss cushioned pathways No more excuses, I need to rid my garden of many winding among beds bursting with rhododendron plants that seemed like a good idea to plant at the blooms in almost every shade of color, size and time. -
Comparative Study on the Ontomorphogenesis Of
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2016 Band/Volume: 23 Autor(en)/Author(s): Chubatova Nina V., Churikova Olga A. Artikel/Article: Comparative study on the ontomorphogenesis of some Clematis and Atragene species (Ranunculaceae) based on the evo-devo concept 162-174 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 23 (2016): 162–174 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Comparative study on the ontomorphogenesis of some Clematis and Atragene species (Ranunculaceae) based on the evo-devo concept Nina V. Chubatova & Olga A. Churikova Summary: The life form of Atragene should be recognized as derivative which had emerged during the transformation of Clematis ontomorphogenesis. The main mode of this transformation is retardation (Chubatova 1991). It can be noticed at different stages of development: elongation of seed germination in Atragene which is associated with a change in the ratio of parts of the embryo, while maintaining the volume of endosperm; elongation of main shoot and shoot systems morphogenesis. It also acts as an adaptation to the short growing season in most zones with temperate climate, including tundra and high mountains, where Atragene may extend. Keywords: Ranunculaceae, Atragene, Clematis, ontogeny, morphogenesis, adaptation, retardation The question about the ways of evolutionary transformation of life forms of flowering plants is far from being resolved. Most botanists have recognized that somatic evolution in different taxonomic groups occurred in different ways, in spite of frequent duplication and convergence. Both woody (Worsdell 1908; Sinnott & Bailey 1914; Golubev 1959) and herbaceous (Scharfetter 1953; Grassl 1967; Hutchinson 1969; Tsvelev 1969, 1970) life forms can be initial.