Title Insect-Flower Relationship in the Temperate Deciduous Forest Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
American Journal of Botany 96(1): 96–109. 2009. O NE SIZE FITS ALL? M OLECULAR EVIDENCE FOR A COMMONLY INHERITED PETAL IDENTITY PROGRAM IN RANUNCULALES 1 David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 USA Petaloid organs are a major component of the fl oral diversity observed across nearly all major clades of angiosperms. The vari- able morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplifi ed by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3 ) and PISTILLATA (PI ) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specifi c across both Ranunculaceae and Berberidaceae. We conclude from this fi nding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological defi nitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms. Key words: APETALA3 ; MADS box genes; petal evolution; PISTILLATA ; Ranunculales. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Towards a Phylogenetic Nomenclature of Tracheophyta
Cantino & al. • Phylogenetic nomenclature of Tracheophyta TAXON 56 (3) • August 2007: 822–846 PHYLOGENEtic noMEncLAturE Towards a phylogenetic nomenclature of Tracheophyta Philip D. Cantino2, James A. Doyle1,3, Sean W. Graham1,4, Walter S. Judd1,5, Richard G. Olmstead1,6, Douglas E. Soltis1,5, Pamela S. Soltis1,7 & Michael J. Donoghue8 1 Authors are listed alphabetically, except for the first and last authors. 2 Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, U.S.A. [email protected] (author for correspondence) 3 Section of Evolution and Ecology, University of California, Davis, California 95616, U.S.A. 4 UBC Botanical Garden and Centre for Plant Research, 6804 SW Marine Drive, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 5 Department of Botany, University of Florida, Gainesville, Florida 32611-8526, U.S.A. 6 Department of Biology, P.O. Box 355325, University of Washington, Seattle, Washington 98195-5325, U.S.A. 7 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. 8 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. This is an abbreviated version of a paper that appears in full in the Electronic supplement to Taxon. Phylogenetic definitions are provided for the names of 20 clades of vascular plants (plus 33 others in the electronic supple- ment). Emphasis has been placed on well-supported clades that are widely known to non-specialists and/or have a deep origin within Tracheophyta or Angiospermae. -
Hideaki OHBA A,* and Shinobu AKIYAMA B
J. Jpn. Bot. 92(4): 245–247 (2017) a, b Hideaki OHBA * and Shinobu AKIYAMA : Notes on the Genus Hortensia (Hydrangeaceae) aDepartment of Botany, the University Museum, the University of Tokyo, 7-3-1, Hongo, Tokyo, 113-0033 JAPAN; bDepartment of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, 305-0005 JAPAN *Corresponding author: [email protected] Summary: New combinations of Hortensia, (2) Treatment of Hydrangea yayeyamensis Hortensia hirta f. albiflora and f. laminalis, Koidz. and H. formosana Koidz. and Hortensia chinensis var. yayeyamensis Hydrangea yayeyamensis and H. formosana are proposed. Hortensia formosana Koidz. is were simultaneously published by Koidzumi lectotypified here. (1929). In the protologue of H. yayeyamensis Koidzumi (1929) wrote “Hab. Loochoo: insula The authors published the generic segregation Yayeyama. Formosa: prope Tamsuy (Oldham of some sections and subsections of the genus no. 110. pro parte in ann[sic] 1864.) Herb. Kew.” Hydrangea sensu De Smet et al. (2015) (Ohba Though McClintock (1957) wrote that Oldham and Akiyama 2016). Some additional new 110 (“pro parte”) is the only specimen cited of combinations need to be published. H. yayeyamensis, Koidzumi cited also “Loochoo: insula Yayeyama.” “Loochoo: insula Yayeyama” (1) New combinations of forms of Hortensia is recognized as a citation of a specimen. hirta Masamune (1958) recognized plants in Yaeyama Hortensia hirta (Thunb.) H. Ohba & S. islands to be distinguished from those in Taiwan Akiyama in J. Jpn. Bot. 91: 348 (2016). and made a new combination, H. chinensis f. f. albiflora (Honda) H. Ohba & S. Akiyama, yayeyamensis (Koidz.) Masam. It is considered comb. -
Street Tree Inventory Report Grant Park Neighborhood October 2016 Street Tree Inventory Report: Grant Park Neighborhood October 2016
Street Tree Inventory Report Grant Park Neighborhood October 2016 Street Tree Inventory Report: Grant Park Neighborhood October 2016 Written by: Kat Davidson, Angie DiSalvo, Julie Fukuda, Jim Gersbach, Jeremy Grotbo, and Jeff Ramsey Portland Parks & Recreation Urban Forestry 503-823-4484 [email protected] http://portlandoregon.gov/parks/treeinventory Grant Park Tree Inventory Organizers: Liz Hay Staff Neighborhood Coordinator: Jim Gersbach Data Collection Volunteers: Linda Brannan, Doug Brazil, Neff Breen, Rick Burkard, Patrick Burns, Dianna Choi, Catherine Clark, Don Crossley, Ann DeNies, Mary Desch, Russell Eng, Gregg Everhart, Claudia Fabbrini, Karla Fitzwater, Liz Hay, Leo Helm, Pamela Hickman, Lisa Horowitz, Martha Irvine, Kiel Jenkins, Ben Jones, James Keiter, Bill Kownacki, Fred Kratz, Marc Langhammer, Kate Laudermilk, Ariel Lewin, Louis Miles, Melinda Moeur, Shelley Morrison, Tamara Olcott, Larry Rabinowitz, Bruce Richard, Kyna Rubin, Amy Simpson, Matt Vellella, Aaron Wolf, and Samantha Wolf Data Entry Volunteers: Max Blasdel, Michael Brehm, Dylan Eglin, Tiffany Eurich, Spencer Keller, Matthew Pryzborski, Nathan Riggsby, Takayuki Shigematsu, Joshua Sindel, Rebecca Tait, and Shauna Volk Arborist-on-Call Volunteers: Van Bogner, Casey Clapp, and Fred Nilsen GIS Technical Support: Josh Darling, Portland Parks & Recreation Financial Support: Portland Parks & Recreation Cover Photos (from top left to bottom right): 1) Unusual burgundy seeds on a Euptelea pleiosperma, an extremely rare find in Portland. 2) The changing leaves of a Persian ironwood (Parrotia persica). 3) A pair of katsuras (Cercidiphyllum japonicum) beginning to show fall color. 4) Chains of seeds forming on a sourwood (Oxydendrum arboreum). 5) The fruit of a dove tree (Davidia involucrata). 6) Flaking bark on a mature redbud (Cercis canadensis). -
2018–2019 Seed Exchange Catalog MID-ATLANTIC GROUP He 25Th Annual Edition for the First Time
The Hardy Plant Society/Mid-Atlantic Group 2018–2019 Seed Exchange Catalog MID-ATLANTIC GROUP he 25th annual edition for the first time. As you can tions and you will find plants of the Seed Exchange see, this seed program in- your garden can’t do with- TCatalog includes 974 cludes new plants not previ- out! Since some listed seed seed donations contributed ously offered as well as old is in short supply, you are en- by 58 gardeners, from begin- favorites. couraged to place your order ners to professionals. Over We’re sure you’ll enjoy early. 98 new plants were donated perusing this year’s selec- Our Seed Donors Catalog listed seed was generously contributed by our members. Where the initial source name is fol- lowed by “/”and other member names, the latter identifies those who actually selected, collected, cleaned, and then provided descriptions to the members who prepared the catalog. If a donor reported their zone, you will find it in parenthesis. Our sincere thanks to our donors—they make this Seed Exchange possible. Aquascapes Unlimited Gibson, M.M. 3177 (7) Perron, William 3321 (6) / Heffner, Randy 1114 Gregg, John 3001 (7) Plant Delights, 32 Bartlett, John 45 Haas, Joan 1277 (6a) Rifici, Stephen 3540 (7) Bennett, Teri 1865 (7) Iroki Garden 5024 (6b) Robinson, Barbara Paul 797 Berger, Clara 65 Jellinek, Susan 1607 (7a) Roper, Lisa 9968 (7a) Bittmann, Frank 2937 (6a) Jenkins Arboretum 9985 (7a) Roskoph, Zane 3645 (7a) Bowditch, Margaret 84 Kolo, Fred 507 (7) Scofield, Connie 1585 Boylan, Rebecca 2137 (6b) Kaplan, Paula West 475 (4/5) Silberstein, Steve 3436 (7a) Bricker, Matthew D. -
Lazzereschi Sara Tesi 13.5.13
UNIVERSITÀ DEGLI STUDI DELLA TUSCIA DI VITERBO DIPARTIMENTO DI SCIENZE E TECNOLOGIE PER L’AGRICOLTURA, LE FORESTE, LA NATURA E L’ENERGIA (DAFNE) Corso di Dottorato di Ricerca in Ortoflorofrutticoltura XXV Ciclo Caratterizzazione morfo-genetica con metodi biometrici e molecolari e applicazioni di tecniche colturali innovative su una collezione di germoplasma di Hydrangea spp. (s.s.d. AGR/04 ) Tesi di dottorato di Dott. Sara Lazzereschi Coordinatore del corso Tutore Dott. Giuseppe Colla Dott. Antonio Grassotti 07/06/2013 INDICE Parte generale pag. 1 1. Introduzione pag. 2 1.1. Cenni storici, origine e diffusione pag. 2 1.2. Classificazione, inquadramento sistematico e descrizione del genere pag. 4 1.2.1. Specie pag. 9 1.3. Impieghi del genere pag.17 1.4. Importanza economica, produzione e valorizzazione del genere Hydrangea pag. 20 1.5. Note di coltivazione pag. 26 2. Miglioramento genetico del genere Hydrangea pag. 30 3. Tecniche di distinzione varietale in floricoltura pag. 35 3.1. Introduzione pag. 35 3.2. Marcatori morfologici pag. 38 3.3. Marcatori biochimici (isoenzimi) pag. 38 3.4. Marcatori molecolari pag. 39 4. La caratterizzazione del genere Hydrangea : stato dell’arte pag. 47 5. Applicazione di tecniche colturali innovative pag. 52 Parte sperimentale pag. 58 6. Materiali pag. 59 6.1. Allestimento e descrizione della collezione pag. 60 I 7. Metodi pag. 64 7.1. Analisi morfometrica pag. 64 7.2. Analisi molecolare pag. 67 7.2.1. Estrazione del DNA pag. 68 7.2.2. Ottenimento di marcatori pag. 69 7.2.3. Reazione di amplificazione mediante PCR: analisi RAPD pag. -
Genetic Diversity Estimates for the Genus Hydrangea and Development of a Molecular Key Based on SSR
RE J. AMER. Soc. HORT. SCI. 131(6):787-797. 2006. Genetic Diversity Estimates for the Genus Hydrangea and Development of a Molecular Key Based on SSR Timothy A. Rinehart USDA—ARS, Southern Horticultural Laboratory, 810 Highway 26 West, Poplarville, MS 39470 Brian E. Scheffler USDA—ARS—CGRU, Mid South Area Geno,nics Laboratory, Stoneville, MS 38776 Sandra M. Reed USDA—ARS, Floral and Nursery Plants Research Unit, Tennessee State University Nursery Research Center, McMinnville, TN 37110 AI)I)tTJoNL INDEX WORDS. Hvdrangea nacrophvlla breeding, molecular marker, Dichroa, Schizophragma, Platycrater ABSTRACT. Using 14 codominant microsatellite markers that amplify loci across 14 different Hydrangea L. species, we analyzed gene diversity and genetic similarity within Hydrangea. Samples also included Dichroa Lour., Plalycrater Sieb. and Zucc., and Schizophragma Sieb. and Zucc. genera to establish their relatedness to Hydrangea species since previous work suggests they may be closely related. Our results support the close affiliation between Macrophyllae E.M. McClint. and Petalanthe (Maxim.) Rehder subsections and their separation from the other Hydrangea species. Most of the Hydrangea species analyzed cluster within their designated sections and subsections; however, genetic distance between species within each subsection varied considerably. Our data suggest that morphological analyses which labeled H. serrata (Thuiib.) Ser. as a subspecies of H. inacrophylla (Thunb. Ex J.A. Murr.) Ser. are probably more accurate than recent genome size data suggesting H. inacrophylla ssp. inacrophylla (Thunb.) Ser. and H. macrophylla ssp. ser- rata (Thunb.) Makino are separate species. Gene diversity estimates indicate that 64.7% of the total diversity is due to differences between species and 49.7% of the overall variation is due to differences between subsections. -
Introduction Study Site Result (Number of Seedlings)
Regeneration just after clear cutting at Sugi(Cryptomeria japonica) and Hinoki(Chamaecyparis obtusa) plantation Seiji Ishibashi, Toshihiro Saito, Kazuya Omura and Haruo Sawada (University Forest in Chichibu, The University of Tokyo) Introduction Result (Number of seedlings) The area of plantation in Japan is about ten million hector and many of them has U = Species which grow upper layer grown thirty to fifty years old that reached the age for cutting. However, many forest SU = Species which grow sub-upper layer owners don't want to cut their forest because low price of timber and difficulty of S = Species which grow shrub layer regeneration by planting. Some of them plan to try naturally regeneration after clear C = Conifer species cutting. In this study, we discuss about possibility of early natural regeneration just CL = Climber species after clear cutting at conifer plantation. 160 160 40 140 140 35 120 120 30 100 100 25 80 Study Site 80 20 60 15 60 40 10 40 number trees of per plot number of trees per plot per trees of number number trees plot of per 20 The study site is located at compertment no.3 at University Forest in Chichibu, 5 20 0 0 0 ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ ~10 11~20 21~30 31~40 41~50 51~60 61~100 101~ The University of Tokyo. This site was 87 years Sugi (Cryptomeria japonica) and height class (cm) height class (cm) height class (cm) lower site, after site preparation, Sep. -
LETTER Doi:10.1038/Nature12872
LETTER doi:10.1038/nature12872 Three keys to the radiation of angiosperms into freezing environments Amy E. Zanne1,2, David C. Tank3,4, William K. Cornwell5,6, Jonathan M. Eastman3,4, Stephen A. Smith7, Richard G. FitzJohn8,9, Daniel J. McGlinn10, Brian C. O’Meara11, Angela T. Moles6, Peter B. Reich12,13, Dana L. Royer14, Douglas E. Soltis15,16,17, Peter F. Stevens18, Mark Westoby9, Ian J. Wright9, Lonnie Aarssen19, Robert I. Bertin20, Andre Calaminus15, Rafae¨l Govaerts21, Frank Hemmings6, Michelle R. Leishman9, Jacek Oleksyn12,22, Pamela S. Soltis16,17, Nathan G. Swenson23, Laura Warman6,24 & Jeremy M. Beaulieu25 Early flowering plants are thought to have been woody species to greater heights: as path lengths increase so too does resistance5. restricted to warm habitats1–3. This lineage has since radiated into Among extant strategies, the most efficient method of water delivery almost every climate, with manifold growth forms4. As angiosperms is through large-diameter water-conducting conduits (that is, vessels spread and climate changed, they evolved mechanisms to cope with and tracheids) within xylem5. episodic freezing. To explore the evolution of traits underpinning Early in angiosperm evolution they probably evolved larger conduits the ability to persist in freezing conditions, we assembled a large for water transport, especially compared with their gymnosperm cousins14. species-level database of growth habit (woody or herbaceous; 49,064 Although efficient in delivering water, these larger cells would have species), as well as leaf phenology (evergreen or deciduous), diameter impeded angiosperm colonization of regions characterized by episodic of hydraulic conduits (that is, xylem vessels and tracheids) and climate freezing14,15, as the propensity for freezing-induced embolisms (air bub- occupancies (exposure to freezing). -
Great Plants for Southern Gardens That Missed the Marketing Push©
Great Plants for Southern Gardens That Missed the Marketing Push 447 Great Plants for Southern Gardens That Missed the Marketing Push© Mark Weathington JC Raulston Arboretum at North Carolina State University, Department of Horticultural Sci- ence, Campus Box 7522, Raleigh, North Carolina 27695 Email: [email protected] INTRODUCTION The JC Raulston Arboretum (JCRA) has a 35-year history of collecting and evalu- ating new plants for introduction to the nursery industry. New plants drive the industry especially those that have a marketing push behind them. Many great landscape plants get passed over in the rush for the latest and greatest but deserve a second look. The JC Raulston Arboretum (JCRA) has grown from the first plant the JCRA planted in the mid-1970s. Conifers which were not supposed to survive in the south have grown into mature specimens. Gardens and collections have been planted, grown up, torn out, and re-established. Students have been the mainstay of the arboretum development and have done a great job when given adequate direction. The JCRA’s collection holds many great landscape plants that may never make it to the mainstream due to propagation difficulties. Other plants have shown they have great potential for the south. DECIDUOUS SHRUBS Rhododendron ‘Yoshino’ has proven its worth in the arboretum with leathery, semi- evergreen foliage and trusses of bright flowers in March. The growth habit is much different than many other evergreen azaleas and is used extensively as a hedging plant in Japan. Hydrangea hirta is an underused member of the genus that suf- fers from not having the sterile florets of other landscape hydrangeas. -
Generic Segregation of Some Sections and Subsections of the Genus Hydrangea (Hydrangeaceae)
J. Jpn. Bot. 91(6): 345–350 (2016) Generic Segregation of Some Sections and Subsections of the Genus Hydrangea (Hydrangeaceae) a, b Hideaki OHBA * and Shinobu AKIYAMA aDepartment of Botany, the University Museum, the University of Tokyo, 7-3-1, Hongo, Tokyo, 113-0033 JAPAN; bDepartment of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, 305–0005 JAPAN *Corresponding author: [email protected] (Accepted on October 11, 2016) De Smet (2015) united all genera classified Hydrangeeae by Engler (1930) into a single genus Hydrangea. These genera delimited by Engler are easily distinguished by their morphological features, and also their habitat and ecological preferences. To rescue the genera adopted by Engler we propose generic segregation of most of the sections and subsections of Hydrangea by Engler according to the tree by De Smet et al. (2015). Genus Hortensia Comm. ex A. L. Juss. applies to the species of sect. Euhydrangea subsect. Petalanthae of Engler, and is divided into three sections named Hortensia, Chinenses, and Hirtae. Hydrangea involucrata and H. sikokiana are classified into genus Platycrater Siebold & Zucc., Hydrangea integrifolia Hayata is transfered to genus Cornidia Ruiz & Pav., H. petiolaris Siebold & Zucc. to genus Calyptranthe (Maxim.) H. Ohba & S. Akiyama, and also H. paniculata and similar species to genus Heteromalla (Rehder) H. Ohba & S. Akiyama. The necessary combinations and new states are proposed. A new form of Hortensia serrata, named f. plenidecuris is proposed. Key words: Calyptranthe, Cornidia, Heteromalla, Hortensia, Hortensia serrata f. plenidecuris (new name), Hydrangea, new combination, new state, Platycrater. Recently De Smet et al.