Street Tree Inventory Report Grant Park Neighborhood October 2016 Street Tree Inventory Report: Grant Park Neighborhood October 2016

Total Page:16

File Type:pdf, Size:1020Kb

Street Tree Inventory Report Grant Park Neighborhood October 2016 Street Tree Inventory Report: Grant Park Neighborhood October 2016 Street Tree Inventory Report Grant Park Neighborhood October 2016 Street Tree Inventory Report: Grant Park Neighborhood October 2016 Written by: Kat Davidson, Angie DiSalvo, Julie Fukuda, Jim Gersbach, Jeremy Grotbo, and Jeff Ramsey Portland Parks & Recreation Urban Forestry 503-823-4484 [email protected] http://portlandoregon.gov/parks/treeinventory Grant Park Tree Inventory Organizers: Liz Hay Staff Neighborhood Coordinator: Jim Gersbach Data Collection Volunteers: Linda Brannan, Doug Brazil, Neff Breen, Rick Burkard, Patrick Burns, Dianna Choi, Catherine Clark, Don Crossley, Ann DeNies, Mary Desch, Russell Eng, Gregg Everhart, Claudia Fabbrini, Karla Fitzwater, Liz Hay, Leo Helm, Pamela Hickman, Lisa Horowitz, Martha Irvine, Kiel Jenkins, Ben Jones, James Keiter, Bill Kownacki, Fred Kratz, Marc Langhammer, Kate Laudermilk, Ariel Lewin, Louis Miles, Melinda Moeur, Shelley Morrison, Tamara Olcott, Larry Rabinowitz, Bruce Richard, Kyna Rubin, Amy Simpson, Matt Vellella, Aaron Wolf, and Samantha Wolf Data Entry Volunteers: Max Blasdel, Michael Brehm, Dylan Eglin, Tiffany Eurich, Spencer Keller, Matthew Pryzborski, Nathan Riggsby, Takayuki Shigematsu, Joshua Sindel, Rebecca Tait, and Shauna Volk Arborist-on-Call Volunteers: Van Bogner, Casey Clapp, and Fred Nilsen GIS Technical Support: Josh Darling, Portland Parks & Recreation Financial Support: Portland Parks & Recreation Cover Photos (from top left to bottom right): 1) Unusual burgundy seeds on a Euptelea pleiosperma, an extremely rare find in Portland. 2) The changing leaves of a Persian ironwood (Parrotia persica). 3) A pair of katsuras (Cercidiphyllum japonicum) beginning to show fall color. 4) Chains of seeds forming on a sourwood (Oxydendrum arboreum). 5) The fruit of a dove tree (Davidia involucrata). 6) Flaking bark on a mature redbud (Cercis canadensis). 7) The vibrant flowers of a Pecos crape myrtle Lagerstroemia( indica x fauriei 'Pecos'). 8) Colorful margins on the leaf of a tricolor beech (Fagus sylvatica 'Roseomarginata'). ver. 10/18/2016 Portland Parks & Recreation 1120 SW Fifth Avenue, Suite 1302 Portland, Oregon 97204 (503) 823-PLAY Commissioner Amanda Fritz www.PortlandParks.org Director Mike Abbaté Contents Key Findings .......................................... 1 About Portland’s Street Tree Inventory ..................... 3 Grant Park Street Tree Inventory ......................... 5 Neighborhood Characteristics ......................... 5 Urban Forest Composition............................ 6 Species diversity and tree type composition ........... 6 Functional tree type .............................. 8 Size class distribution ............................. 9 Mature tree form distribution ..................... 10 Importance value................................ 11 Tree Condition .................................... 11 Planting Site Composition and Stocking Level ........... 13 Planting sites................................... 13 Stocking level .................................. 13 Right tree in the right place ....................... 14 Replacement Value ................................. 15 Environmental and Aesthetic Benefits .................. 16 The Future Forest of Grant Park ...................... 17 Recommendations ..................................... 21 Next Steps: Tree Plans and Tree Teams .................... 23 References ........................................... 25 Appendices........................................... 27 A: Methods ....................................... 27 B: Street trees of Grant Park by tree type ............... 29 C: Street trees of Grant Park by size (map) .............. 32 D: Vulnerability to key pests (map)..................... 33 E: Young street trees (trees ≤ 3” DBH) (map)............. 34 F: Large street trees (trees > 24” DBH) (map) ............ 35 G: Poor and dead street trees (map) .................... 36 H: Planting site types (map) .......................... 37 I: Planting site sizes (map)............................ 38 J: Available street tree planting sites (map) ............... 39 K: Priority street tree planting sites (map) ............... 40 Portland Parks & Recreation i Volunteers, guided by Portland Parks & Recreation Urban Forestry staff, collected data on all 2,787 street trees within Grant Park neighborhood to compile the neighborhood’s first complete street tree inventory. The data are being used to inform the creation of a Neighborhood Tree Plan to guide volunteers in caring for their community’s trees. ii Street Tree Inventory Report – Grant Park Neighborhood 2016 Key Findings This report provides the results of a street tree inventory conducted in the Grant Park neighborhood in 2016, along with Portland Parks & Recreation (PP&R) Urban Forestry staff recommendations for the Grant Park tree team. Over the course of four work days, 38 volunteers contributed more than 156 hours collecting data on each of the neighborhood’s 2,787 street trees. URBAN FOREST STRUCTURE • Grant Park’s street tree population is dominated by maple, cherry, dogwood, and pear and does not meet recommended species diversity guidelines. While 87 tree types were found in this inventory, only two families, Sapindaceae and Rosaceae, account for half (51.3%) of the street tree resource. Furthermore, both the Acer (maple) and Prunus (plum, cherry) genera are over represented, leaving Grant Park’s street tree population vulnerable to pests, pathogens, and the various effects of a changing climate. • The dominance of broadleaf deciduous trees (98%) in Grant Park points to a need to plant more evergreen trees for year-round benefits and to create a more resilient urban forest. • Only 16.3% of trees in Grant Park are young (<3” DBH), leaving few trees to offset mortality as the population ages. Frequent planting of young trees helps to ensure a stable street tree population with a healthier age distribution in the future. • Only 17% of Grant Park’s street trees are large form varieties. Large form trees are necessary to increase canopy cover and the benefits it provides for Grant Park’s residents. Planting the estimated 151 large available spaces identified in this inventory will maximize tree canopy in the Grant Park neighborhood's rights-of-way. TREE CONDITION • The majority of trees inventoried in Grant Park are in fair or good condition. The genus with the highest percent of trees in poor condition is Betula (birch), 30.8% of which are rated poor, followed by Prunus, at 26.6%. Of all street trees rated poor, two out of every five (39.8%) are in the Rosaceae family. PLANTING SITES AND STOCKING LEVEL • Although 78% of street tree planting sites in Grant Park have trees, there are 666 sites that are empty and ready for planting. • Only 28.6% of Grant Park’s large planting sites contain trees large enough for the site. While large sites make up 39% of all sites where trees are found, only 17% of Grant Park’s street trees are large form trees. Small form trees planted in large planting sites are a missed opportunity because larger trees contribute many times more benefits than do smaller ones. URBAN FOREST VALUE AND BENEFITS • Grant Park’s street trees produce an estimated $572,565 annually in environmental and aesthetic benefits. The replacement value of this resource is $13.5 million. Planting efforts focused on appropriately sized trees distributed across the neighborhood will ensure that future benefits are equitably distributed among all residents. Portland Parks & Recreation 1 Clockwise from top left: 1) Evergreen conifers like this attractive lacebark pine (Pinus bungeana), are under represented in Grant Park, making up only 1% of all street trees. 2) These large form bur oaks (Quercus macrocarpa) are appropriate for this wide strip and will provide many times more benefits than if a small form tree had been planted here. 3) At 60.9" DBH, this elm (Ulmus sp.) is the largest diameter street tree in Grant Park. 4) Bumping out sidewalks to make room for tree roots is an alternative to removal of larger trees in constricted spaces, and will help support healthier tree growth. 2 Street Tree Inventory Report – Grant Park Neighborhood 2016 About Portland’s Street Tree Inventory THE IMPORTANCE OF STREET TREES Street trees are an important public asset in urban environments, serving as a buffer between our transportation corridors and our homes while enhancing the livability of our city. As integral components of a community’s green infrastructure, street trees provide multiple economic, environmental, and social benefits such as cleaner air and water, cooler summer temperatures, safer streets, and increased property values. Unlike traditional, “grey” infrastructure, which begins to deteriorate the moment it is installed, the benefits that street trees provide increase over the lifetime of the tree, making their planting and maintenance one of the best investments a city and its residents can make. While street trees are only one component of Portland’s urban forest, they are particularly important because they are the trees that residents Urban forests are complex, living interact with most. Having adequate information resources that interact both about the street tree population allows a community to make informed decisions about species selection, positively and negatively with the planting, and maintenance priorities. Information on surrounding environment. They the location, condition, and diversity of the street tree produce multiple benefits and have population enables our communities to steward this resource and
Recommended publications
  • David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
    American Journal of Botany 96(1): 96–109. 2009. O NE SIZE FITS ALL? M OLECULAR EVIDENCE FOR A COMMONLY INHERITED PETAL IDENTITY PROGRAM IN RANUNCULALES 1 David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 USA Petaloid organs are a major component of the fl oral diversity observed across nearly all major clades of angiosperms. The vari- able morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplifi ed by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3 ) and PISTILLATA (PI ) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specifi c across both Ranunculaceae and Berberidaceae. We conclude from this fi nding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological defi nitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms. Key words: APETALA3 ; MADS box genes; petal evolution; PISTILLATA ; Ranunculales.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Title Insect-Flower Relationship in the Temperate Deciduous Forest Of
    Insect-flower Relationship in the Temperate Deciduous Forest Title of Kibune, Kyoto : An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits INOUE, Tamiji; KATO, Makoto; KAKUTANI, Takehiko; Author(s) SUKA, Takeshi; ITINO, Takao Contributions from the Biological Laboratory, Kyoto Citation University (1990), 27(4): 377-464 Issue Date 1990-08-20 URL http://hdl.handle.net/2433/156100 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contr. biol, Lab. Kyoto Univ,, Vol. 27, pp. 377-463 Issued 20 August 1990 Insect-flower Relationship in the Temperate Deciduous 'Forest of Kibune, Kyoto: An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits' Tamiji INouE, Makoto KATo, Takehiko KAKuTANi, Takeshi SuKA and Takao IT[No ABSTRACT In 1984 -1987, insect visitors to fiowers werebimonthly or weekly surveyed on a total of 115 plant species or 49 families in the temperate deciduous forest of Kibune, Kyoto, Japan. Flowering was observed from early April to early November, The number of plant species that concurrently bloomed was nine to 17 from May to September. Themonthly total number of flowering plant species peaked twice in May (34 spp.) and September (33 spp,). From April to August, floweringperiods werestaggered arnong congeneric woody species, e.g., Lindera, Rubus, Hydrangea and Deutzia. A total of 4603 individuals of 889 species in 12 orders of Insecta and 2 orders of Arachnoidea were collected. The most abundant order was Hymeno- ptera (46 O/o of the total number of individuals), and it was followed by Diptera (30 O/o) and Coleoptera (140/o).
    [Show full text]
  • Towards a Phylogenetic Nomenclature of Tracheophyta
    Cantino & al. • Phylogenetic nomenclature of Tracheophyta TAXON 56 (3) • August 2007: 822–846 PHYLOGENEtic noMEncLAturE Towards a phylogenetic nomenclature of Tracheophyta Philip D. Cantino2, James A. Doyle1,3, Sean W. Graham1,4, Walter S. Judd1,5, Richard G. Olmstead1,6, Douglas E. Soltis1,5, Pamela S. Soltis1,7 & Michael J. Donoghue8 1 Authors are listed alphabetically, except for the first and last authors. 2 Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, U.S.A. [email protected] (author for correspondence) 3 Section of Evolution and Ecology, University of California, Davis, California 95616, U.S.A. 4 UBC Botanical Garden and Centre for Plant Research, 6804 SW Marine Drive, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 5 Department of Botany, University of Florida, Gainesville, Florida 32611-8526, U.S.A. 6 Department of Biology, P.O. Box 355325, University of Washington, Seattle, Washington 98195-5325, U.S.A. 7 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. 8 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. This is an abbreviated version of a paper that appears in full in the Electronic supplement to Taxon. Phylogenetic definitions are provided for the names of 20 clades of vascular plants (plus 33 others in the electronic supple- ment). Emphasis has been placed on well-supported clades that are widely known to non-specialists and/or have a deep origin within Tracheophyta or Angiospermae.
    [Show full text]
  • LETTER Doi:10.1038/Nature12872
    LETTER doi:10.1038/nature12872 Three keys to the radiation of angiosperms into freezing environments Amy E. Zanne1,2, David C. Tank3,4, William K. Cornwell5,6, Jonathan M. Eastman3,4, Stephen A. Smith7, Richard G. FitzJohn8,9, Daniel J. McGlinn10, Brian C. O’Meara11, Angela T. Moles6, Peter B. Reich12,13, Dana L. Royer14, Douglas E. Soltis15,16,17, Peter F. Stevens18, Mark Westoby9, Ian J. Wright9, Lonnie Aarssen19, Robert I. Bertin20, Andre Calaminus15, Rafae¨l Govaerts21, Frank Hemmings6, Michelle R. Leishman9, Jacek Oleksyn12,22, Pamela S. Soltis16,17, Nathan G. Swenson23, Laura Warman6,24 & Jeremy M. Beaulieu25 Early flowering plants are thought to have been woody species to greater heights: as path lengths increase so too does resistance5. restricted to warm habitats1–3. This lineage has since radiated into Among extant strategies, the most efficient method of water delivery almost every climate, with manifold growth forms4. As angiosperms is through large-diameter water-conducting conduits (that is, vessels spread and climate changed, they evolved mechanisms to cope with and tracheids) within xylem5. episodic freezing. To explore the evolution of traits underpinning Early in angiosperm evolution they probably evolved larger conduits the ability to persist in freezing conditions, we assembled a large for water transport, especially compared with their gymnosperm cousins14. species-level database of growth habit (woody or herbaceous; 49,064 Although efficient in delivering water, these larger cells would have species), as well as leaf phenology (evergreen or deciduous), diameter impeded angiosperm colonization of regions characterized by episodic of hydraulic conduits (that is, xylem vessels and tracheids) and climate freezing14,15, as the propensity for freezing-induced embolisms (air bub- occupancies (exposure to freezing).
    [Show full text]
  • A Review of Psyra Walker, 1860 (Lepidoptera, Geometridae, Ennominae) from China, with Description of One New Species
    Zootaxa 3682 (3): 459–474 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3682.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:50B82368-6A4F-4B43-BF99-493AAEDFEC4B A review of Psyra Walker, 1860 (Lepidoptera, Geometridae, Ennominae) from China, with description of one new species ZULIAN LIU1,2, DAYONG XUE1, WENKAI WANG2,3 & HONGXIANG HAN1,3 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 2School of Agriculture, Yangtze University, Hubei, China 3Corresponding author. E-mail: [email protected], w_wenkai @hotmail.com Abstract The genus Psyra Walker, 1860 in China is reviewed. Thirteen species are recognized, of which, P. breviprotrusa sp. nov. is described as new to science, and P. moderata Inoue, 1982, P. gracilis Yazaki, 1992 and P. boarmiata (Graeser, 1892) are recorded for the first time from China. P. cuneata szetschwana Wehrli, 1953 and P. cuneata dsagara Wehrli, 1953 are upgraded to specific level, i.e. P. szetschwana stat. nov. and P. dsagara stat. nov., and a lectotype is designated for P. dsagara. One new synonym is established: P. szetschwana Wehrli, 1953 = P. cuneata lidjangica Wehrli, 1953 syn. nov. The diagnoses for all species are given. Illustrations of external features and genitalia are presented. Key words: Psyra, Gnophini, taxonomy, synonym Introduction The genus Psyra was described by Walker (1860) as a monotypic genus based on P. cuneata Walker, 1860 from India. Orbasia Swinhoe, 1894 and Oncodocnemis Rebel, 1901 were listed as junior synonyms of Psyra by Parsons et al.
    [Show full text]
  • A Review of Psyra Walker, 1860 (Lepidoptera, Geometridae, Ennominae) from China, with Description of One New Species
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3682 (3): 459–474 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3682.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:50B82368-6A4F-4B43-BF99-493AAEDFEC4B A review of Psyra Walker, 1860 (Lepidoptera, Geometridae, Ennominae) from China, with description of one new species ZULIAN LIU1,2, DAYONG XUE1, WENKAI WANG2,3 & HONGXIANG HAN1,3 1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 2School of Agriculture, Yangtze University, Hubei, China 3Corresponding author. E-mail: [email protected], w_wenkai @hotmail.com Abstract The genus Psyra Walker, 1860 in China is reviewed. Thirteen species are recognized, of which, P. breviprotrusa sp. nov. is described as new to science, and P. moderata Inoue, 1982, P. gracilis Yazaki, 1992 and P. boarmiata (Graeser, 1892) are recorded for the first time from China. P. cuneata szetschwana Wehrli, 1953 and P. cuneata dsagara Wehrli, 1953 are upgraded to specific level, i.e. P. szetschwana stat. nov. and P. dsagara stat. nov., and a lectotype is designated for P. dsagara. One new synonym is established: P. szetschwana Wehrli, 1953 = P. cuneata lidjangica Wehrli, 1953 syn. nov. The diagnoses for all species are given. Illustrations of external features and genitalia are presented. Key words: Psyra, Gnophini, taxonomy, synonym Introduction The genus Psyra was described by Walker (1860) as a monotypic genus based on P.
    [Show full text]
  • Ancestral Traits and Specializations in the Flowers of the Basal Grade of Living Angiosperms
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Ancestral traits and specializations in the flowers of the basal grade of living angiosperms Endress, Peter K ; Doyle, James A DOI: https://doi.org/10.12705/646.1 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-119333 Journal Article Published Version Originally published at: Endress, Peter K; Doyle, James A (2015). Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. Taxon, 64(6):1093-1116. DOI: https://doi.org/10.12705/646.1 TAXON 64 (6) • December 2015: 1093–1116 Endress & Doyle • Flowers of basal living angiosperms REVIEW Ancestral traits and specializations in the flowers of the basal grade of living angiosperms Peter K. Endress1 & James A. Doyle2 1 Department of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland 2 Department of Evolution and Ecology, University of California, Davis, California 95616, U.S.A. Author for correspondence: Peter K. Endress, [email protected] ORCID: PKE, http://orcid.org/0001­6622­8196; JAD, http://orcid.org/0002­4083­8786 DOI http://dx.doi.org/10.12705/646.1 Abstract New morphological and phylogenetic data prompt us to present an updated review of floral morphology and its evolution in the basal ANITA grade of living angiosperms, Chloranthaceae, and Ceratophyllum. Floral phyllotaxis is complex whorled in Nymphaeales and spiral in Amborella and Austrobaileyales. It is unresolved whether phyllotaxis was ancestrally whorled or spiral, but if it was whorled, the whorls were trimerous.
    [Show full text]
  • Towards a Phylogenetic Nomenclature of Tracheophyta
    Cantino & al. • Phylogenetic nomenclature of Tracheophyta TAXON 56 (3) • August 2007: 822–846 PHYLOGENEtic noMEncLAturE Towards a phylogenetic nomenclature of Tracheophyta Philip D. Cantino2, James A. Doyle1,3, Sean W. Graham1,4, Walter S. Judd1,5, Richard G. Olmstead1,6, Douglas E. Soltis1,5, Pamela S. Soltis1,7 & Michael J. Donoghue8 1 Authors are listed alphabetically, except for the first and last authors. 2 Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, U.S.A. [email protected] (author for correspondence) 3 Section of Evolution and Ecology, University of California, Davis, California 95616, U.S.A. 4 UBC Botanical Garden and Centre for Plant Research, 6804 SW Marine Drive, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 5 Department of Botany, University of Florida, Gainesville, Florida 32611-8526, U.S.A. 6 Department of Biology, P.O. Box 355325, University of Washington, Seattle, Washington 98195-5325, U.S.A. 7 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. 8 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. This is an abbreviated version of a paper that appears in full in the Electronic supplement to Taxon. Phylogenetic definitions are provided for the names of 20 clades of vascular plants (plus 33 others in the electronic supple- ment). Emphasis has been placed on well-supported clades that are widely known to non-specialists and/or have a deep origin within Tracheophyta or Angiospermae.
    [Show full text]
  • Angiosperm Phylogeny Inferred from Sequences of Four Mitochondrial Genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A
    Journal of Systematics and Evolution 48 (6): 391–425 (2010) doi: 10.1111/j.1759-6831.2010.00097.x Angiosperm phylogeny inferred from sequences of four mitochondrial genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A. HENDRY 1Rui-Qi LI 1Joseph W. BROWN 1Ya n g L I U 1Geordan T. HUDSON 3Zhi-Duan CHEN 1(Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA) 2(School of Life Sciences, Nanjing University, Nanjing 210093, China) 3(Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) Abstract An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atp1, matR, nad5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales–Oxalidales–Malpighiales) clade is sister to malvids (or rosid II), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade.
    [Show full text]
  • The Phylogenetic Potential of Orbicules in Angiosperms
    − pISSN 1225-8318 Korean J. Pl. Taxon. 48(1): 9 23 (2018) eISSN 2466-1546 https://doi.org/10.11110/kjpt.2018.48.1.9 Korean Journal of ORIGINAL ARTICLE Plant Taxonomy The phylogenetic potential of orbicules in angiosperms Hye-Kyoung MOON* Department of Biology, Kyung Hee University, Seoul 02447, Korea (Received 21 November 2017; Revised 26 January 2018; Accepted 21 March 2018) ABSTRACT: The distribution of orbicules was investigated for eleven taxa of six genera in Lamiaceae and four taxa of three genera in Verbenaceae using scanning electron microscopy. A literature survey to evaluate the phy- logenetic potential of the orbicules and their possible correlations with tapetum types was also conducted. The orbicules are consistently absent in all investigated taxa of Lamiaceae, while small orbicules of an average size of less than 1 µm are densely distributed in Verbenaceae. In fact, orbicules appear consistently in 123 of 150 angiosperm families when investigated in at least one species. Thus, the distribution patterns of orbicules could be a useful diagnostic character in angiosperms. In addition, orbicules occur in 84% taxa of the secretory tape- tum type, while they are commonly absent in the amoeboid tapetum type (ca. 80%). The presence of orbicules may be correlated with the secretory tapetum type. However, the study of orbicules is restricted in 150 families and the tapetum type within these families can be applied for 92 families out of a total of 416 angiosperm fam- ilies. Thus, further investigation of orbicules is necessary in extended taxa to address the questions pertaining to orbicules. Keywords: orbicules, scanning electron microscopy, tapetum type, angiosperms Pollen morphological traits have been considered as useful shape of orbicules has phylogenetic significance, so orbicules diagnostic characters, since they often provide important clues are drawing keen attention in that they could be the characters to identify plant species and infer their evolutionary history.
    [Show full text]
  • United States Department of Agriculture
    SEP-5 UNITED STATES DEPARTMENT OF AGRICULTURE INVENTORY No. 112 Washington, D. C. • Issued September 1934 PLANT MATERIAL INTRODUCED BY THE DIVISION OF FOREIGN PLANT INTRODUCTION, BUREAU OF PLANT INDUSTRY, JULY 1 TO SEPTEMBER 30, 1932 (Nos. 100468-101157) CONTENTS Page Introductory statement „ 1 Inventory.., - - _ 3 Index of common and scientific names 27 INTRODUCTORY STATEMENT Inventory no. 112 lists the introductions (nos. 100468-101157) received by the Division of Foreign Plant Introduction during the period from July 1 to Septem- ber 30, 1932. It records the further kindness of Maj. Lionel de Rothschild and the Honorable Henry MacLaren in presenting additional seeds from the sixth Forrest expedition to southwestern China. Nos. 10072^-100798, Solatium tuberosum, collected by C. O. Erlanson and H. G. MacMillan, represent the last collection from that expedition to South America, together with various miscellaneous collections (100688-100709, 100713-100718, 100833-100837) gathered in the same territory. The principal collections represent very large special collections made for Department specialists, as, for example, two sugar collections, one from Charles H. Thrall, Habana, Cuba (101115-101130), and one from the experiment station of the Hawaiian Sugar Planters' Association, Hawaii (10102^-101057); forage plants, chiefly grasses, from New Zealand (100660-100676), and from Wales (100678- 100681); a collection of cinchona, Guatemalan cuttings, from Colonel Ruehl (100799-100832); and seeds purchased from the Hindustan Nursery Co., Calcutta, India (100986-100988), and the Chandra Nursery, Rhenock, Sikkim State, Bengal (101064). The botanical determinations of these introductions have been made and the nomenclature determined by the late H. C. Skeels,1 who had general supervision of this inventory.
    [Show full text]