Wood and Bark Anatomy of Ranunculaceae (Including Hydrastis) and Glaucidiaceae Sherwin Carlquist Santa Barbara Botanic Garden

Total Page:16

File Type:pdf, Size:1020Kb

Wood and Bark Anatomy of Ranunculaceae (Including Hydrastis) and Glaucidiaceae Sherwin Carlquist Santa Barbara Botanic Garden Aliso: A Journal of Systematic and Evolutionary Botany Volume 14 | Issue 2 Article 2 1995 Wood and Bark Anatomy of Ranunculaceae (Including Hydrastis) and Glaucidiaceae Sherwin Carlquist Santa Barbara Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1995) "Wood and Bark Anatomy of Ranunculaceae (Including Hydrastis) and Glaucidiaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 14: Iss. 2, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol14/iss2/2 Aliso, 14(2), pp. 65-84 © 1995, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 WOOD AND BARK ANATOMY OF RANUNCULACEAE (INCLUDING HYDRASTIS) AND GLAUCIDIACEAE SHERWIN CARLQUIST Santa Barbara Botanic Garden 1212 Mission Canyon Road Santa Barbara, California 931051 ABSTRACT Wood anatomy of 14 species of Clematis and one species each of Delphinium, Helleborus, Thal­ ictrum, and Xanthorhiza (Ranunculaceae) is compared to that of Glaucidium palma tum (Glaucidiaceae) and Hydrastis canadensis (Ranunculaceae, or Hydrastidaceae of some authors). Clematis wood has features typical of wood of vines and lianas: wide (earlywood) vessels, abundant axial parenchyma (earlywood, some species), high vessel density, low proportion of fibrous tissue in wood, wide rays composed of thin-walled cells, and abrupt origin of multiseriate rays. Superimposed on these features are expressions indicative of xeromorphy in the species of cold or dry areas: numerous narrow late­ wood vessels, presence of vasicentric tracheids, shorter vessel elements, and strongly marked growth rings. Wood of Xanthorhiza is like that of a (small) shrub. Wood of Delphinium, Helleborus, and Thalictrum is characteristic of herbs that become woodier: limited amounts of secondary xylem, par­ enchymatization of wood, partial conversion of ray areas to libriform fibers (partial raylessness). Wood of Ranunculaceae other than Clematis has numerous narrow vessels, probably an adaptation to cold more than drought. Glaucidium has occasional scalariform perforation plates like those almost uni­ versally present in Paeonia, but the two genera differ strongly in other wood features. Wood of Hydrastis (scalariform perforation plates occasional in primary xylem, rare in secondary xylem) ac­ cords with the idea that Hydrastis is a lineage that separated from the base of Ranunculaceae. Features that ally Ranunculaceae with other families of Ranunculiflorae include presence of wide multiseriate rays (without accompanying uniseriate rays), vessel restriction patterns, and storied structure. Wood­ iness in Ranunculaceae is probably secondary, at least to some extent; the woodiness of Xanthorhiza, thought by some to represent a primitive genus in the family, could be either primary or secondary. Key words: Berberidales, Glaucidium, Hydrastis, Paeonia, Papaverales, Ranunculaceae, Ranunculi- florae, storied wood structure, vessel restriction patterns. INTRODUCTION omy of these families may help understand the inter­ relationships of these taxa. The present essay continues Phylogenetically, Ranunculaceae have been of in­ a series begun with studies of Lardizabalaceae (Carl­ terest because they have occupied a near-basal position quist 1984) and Papaveraceae (Carlquist and Zona in many systems. Most recently, the cladograms of 1988; Carlquist et al. 1994). Chase et al. (1993) follow this pattern on the basis of Despite the fact that Clematis contains about 250 rbcL data. Currently, Ranunculaceae are also of inter­ species of woody vines (Willis 1973), only a few spe­ est in relation to the paleoherb hypothesis (Taylor and cies have been investigated with respect to wood anat­ Hickey 1992). Anatomy of wood potentially offers omy. Accounts have been offered by Schmidt (1941), character expressions that illuminate these concepts. Metcalfe and Chalk (1950), Greguss (1959), Grosser Because Ranunculaceae contain a few woody genera (1977), Schweingruber (1978, 1992), and Sieber and as well as many herbaceous genera, it is a key family Kucera (1980). However, these accounts are incom­ in understanding primary versus secondary woodiness, plete, contradictory, and offer some inaccuracies. a chief concern of the paleoherb hypothesis. Wood anatomy of two species of Ranunculaceae in Ranunculiftorae (a superorder that equates with the genera other than Clematis has been briefly described orders Berberidales, Papaverales, Ranunculales, or by Schweingruber (1992), underlining the lack of Rhoeadales of earlier authors) consists of five main wood data for the family. In order to compare wood families: Berberidaceae, Lardizabalaceae, Menisper­ anatomy of Ranunculaceae to that of other Ranuncu­ maceae, Papaveraceae, and Ranunculaceae, as well as liftorae, a more nearly complete and accurate under­ some smaller satellite families. Studies on wood anat- standing of wood in the family than currently at hand is required. In this connection, information is needed 1 Address for correspondence with author: 4539 Via Huerto, Santa on wood of two genera traditionally included in Ran­ Barbara, CA 93110. This study was begun at the Rancho Santa Ana unculaceae (e.g., Prantl 1891): Hydrastis and Glauci­ Botanic Garden, 1500 N. College Ave., Claremont, CA 91711. dium. Recently excluded from Ranunculaceae as 66 ALISO monogenetic families, Glaucidium and Hydrastis have rhosa, and Glaucidium palmatum (see Table 1); por­ been the objects of research, chiefly on embryology tions of these three were preserved in 50% aqueous and floral anatomy (Tamura 1972; Tobe 1981; To be ethyl alcohol. Wood of genera other than Clematis, and Keating 1985). Keener (1993) has offered a sum­ Glaucidium, and Thalictrum were derived from spec­ mary of work to date on Hydrastis, and concludes that imens in the herbarium of the Rancho Santa Ana Bo­ it can be regarded as a subfamily within Ranuncula­ tanic Garden. Some of the wood samples of Clematis ceae. There is now general agreement that Paeonia were obtained from xylaria (see Table 1), and for these should be excluded from Ranunculaceae as Paeoni­ I am especially indebted to Dr. Regis Miller of the aceae and perhaps placed near the families of Ranun­ Forest Products Laboratory (MADw, SJRw) and to Dr. culiflorae (e.g., Thorne 1992), although not within the Roger Dechamps of the Musee Royale de l' Afrique group of families cited above as Ranunculiflorae. Centrale, Tervuren, Belgium (Tw). The woods of Wood anatomy may prove significant in comparing Clematis documented by my collection numbers (Ta­ Paeonia with Glaucidiaceae, Hydrastidaceae, and Ran­ ble 1) are all from cultivated specimens; herbarium unculaceae. specimens to document my collections are deposited Wood anatomy of Glaucidiaceae and Ranunculaceae at the Rancho Santa Ana Botanic Garden. I am grateful is worthy of examination with respect to habits and to the Municipal Botanic Garden, Dunedin, New Zea­ habitats. The woody vine Clematis ranges from upland land, and to the Rancho Santa Ana Botanic Garden for tropical to temperate alpine sites. The "woody herb" wood from cultivated specimens included in this study. (herb, with various degrees of secondary xylem pro­ The stem of Thalictrum polycarpum was collected duction in stems near the ground or beneath the ground from cultivated plants in the Santa Barbara Botanic surface) habits of some Ranunculaceae should be Garden. taken into account in studies of wood anatomy. Of the The localities of noncultivated specimens are as fol­ genera included in this study, only Xanthorhiza qual­ lows: C. dioscoriifolia, ruderal, New York City; C. ifies as a shrub or subshrub, an understory element in haenkeana, Ecuador; C. iringaensis, Shaba, Central moist temperate forests. Some species of the North Africa; C. ligusticifolia, dry riverbank near Yakima, Temperate genus Delphinium have a short, upright, Washington; C. paucifiora, Santa Ana Mountains, Cal­ woody caudex. Helleborus (Mediterranean region to ifornia; C. pickeringii, Fiji; Delphinium elatum, 83 the Caucasus Mountains) can be a subshrub with mod­ miles from Novosibirsk on highway to Bernaul, Si­ erately woody stems (H. foetidus L.), but most species, beria, Russia; Glaucidium palmatum, Mt. Shirano near such as H. viridis studied here, have rhizomes with Lake Chuzenji, Japan; Helleborus viridis, Montelupo, only a little secondary xylem. Hydrastis (two species Italy; Hydrastis canadensis, Neversink, Berks Co., of moist temperate forests: H. canadensis and H. je­ Pennsylvania; Xanthorhiza apiifolia, MacDowell Co., zoensis Sieb. & Zucc.) has succulent underground rhi­ North Carolina. The identity of the specimen cited here zomes. Glaucidium has a habit similar to that of Hy­ as C. haenkeana was determined with the aid of com­ drastis, but with more condensed rhizomes; the single ments from Dr. Frederick Essig and Dr. Nancy Mo­ species is confined to montane northern Japan (Prantl reno. 1891). Genera with minimal secondary xylem have Dried wood samples of both Clematis and the re­ been excluded from this study. maining genera (incorporating bark portions) provided Are Ranunculaceae primarily or secondarily woody, difficulties in sectioning because of wideness of ves­ or have both phyletic curricula occurred within the sels and (in bark) contrast between softness of phloem family? Wood anatomy examined in this context can and hardness of fibers. These problems were solved by cast light not only on this family but on others (such using a technique involving
Recommended publications
  • 'Dietary Profile of Rhinopithecus Bieti and Its Socioecological Implications'
    Grueter, C C; Li, D; Ren, B; Wei, F; van Schaik, C P (2009). Dietary profile of Rhinopithecus bieti and its socioecological implications. International Journal of Primatology, 30(4):601-624. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: International Journal of Primatology 2009, 30(4):601-624. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2009 Dietary profile of Rhinopithecus bieti and its socioecological implications Grueter, C C; Li, D; Ren, B; Wei, F; van Schaik, C P Grueter, C C; Li, D; Ren, B; Wei, F; van Schaik, C P (2009). Dietary profile of Rhinopithecus bieti and its socioecological implications. International Journal of Primatology, 30(4):601-624. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: International Journal of Primatology 2009, 30(4):601-624. Dietary profile of Rhinopithecus bieti and its socioecological implications Abstract To enhance our understanding of dietary adaptations and socioecological correlates in colobines, we conducted a 20-mo study of a wild group of Rhinopithecus bieti (Yunnan snub-nosed monkeys) in the montane Samage Forest. This forest supports a patchwork of evergreen broadleaved, evergreen coniferous, and mixed deciduous broadleaved/ coniferous forest assemblages with a total of 80 tree species in 23 families. The most common plant families by basal area are the predominantly evergreen Pinaceae and Fagaceae, comprising 69% of the total tree biomass.
    [Show full text]
  • Some of the Best Vines and Ground Covers for Massachusetts Gardens**
    ARNOLDIA A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME 13 MARCH 6, 1953 NUMBERS 1-2 SOME OF THE BEST VINES AND GROUND COVERS FOR MASSACHUSETTS GARDENS** the past two years, two issues of Arnoldia have dealt with some of DURINGthe best shrubs and trees for Massachusetts gardens. (Arnoldia 11 : No. 1, March 9, 1951 ; Vol. 11 : No. 1, March 7, 195~?~. This issue, dealing with vines and ground covers will complete this series. Everything which was said in those bulletins on what constitutes "the best" and how such plants are chosen, is also applicable here to the vines and ground covers. It should be re-emphasized here however, that nothing is implied in the following discussions of the selected types, that would indicate some of the others listed on pages 18 and 19 are not just as serviceable. The recommended ones might be used considerably more than they are at present. It is especially important to note that each plant in the following list is avail- able from at least one of the listed nurserymen. It was impossible to contact all the nurserymen in the state, so there are undoubtedly many other sources in the state for these plants. Since they are available, your local nurseryman can obtain them for you, if he will. Glowing descriptions of plants that are unobtainable may play on the imagina- tion, but it is useless to become enthusiastic about them until they are obtain- able. Each one of these listed is available in 1953. Consequently, the gardeners of the state are urged to become better acquainted with these vines and ground covers, buy a few that are hardy and in this way increase the beauty and interest of the home grounds.
    [Show full text]
  • Plant Descriptions 2018 4/22/2018
    Tyler Plant Sale - Plant Descriptions 2018 4/22/2018 TypeDesc Botanical Common Season of Exposure Size Description Name Name Interest Woody: Vine Clematis Clematis Summer to Sun to 8-10' Clematis 'Cardinal Wyszynski' dazzles your garden with huge 8" glowing 'Cardinal Fall Partial crimson flowers. The vibrant flowers are accented with darker crimson Wyszynski' Shade anthers and light pink filaments. Blooms in June-July and again in September. Attracts pollinators. Easy to grow in a rich, porous, alkaline soil. Provide shade for the roots with a generous layer of mulch or a shallow-rooted groundcover near the base of the vine. Received the Golden Medal at 'Plantarium' in 1990. Woody: Vine Clematis Hybrid Summer Sun to 6-8’ Fully double white flowers have yellow anthers and green outer petals. 'Duchess of Clematis Partial They are borne on the previous year’s growth and the current season’s Edinburgh' Shade new growth. This clematis does not require heavy pruning, remove only weak or dead stems in late spring. Tolerates most garden soils, needs protection from cold winds. Woody: Vine Clematis Clematis Early Sun to 8-10’ A beautiful, compact vine that covers itself with 5” shell pink flowers in 'Hagley Summer Partial summer. 'Hagley Hybrid' is also know as Pink Chiffon. This is a large- Hybrid' Shade flowering clematis that can be grown as a container plant. It is best keep out of full sun to prevent bleaching of flowers. Prefers moist, well-drained soil and for best results, mulch. TypeDesc Botanical Common Season of Exposure Size Description Name Name Interest Woody: Vine Clematis x Clematis Summer to Sun to 6-10' This deciduous hybrid clematis, has unusual and very striking deep blue durandii Fall Partial flowers with creamy stamens on a non-clinging, scrambling vine.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • The Developmental and Genetic Bases of Apetaly in Bocconia Frutescens
    Arango‑Ocampo et al. EvoDevo (2016) 7:16 DOI 10.1186/s13227-016-0054-6 EvoDevo RESEARCH Open Access The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae) Cristina Arango‑Ocampo1, Favio González2, Juan Fernando Alzate3 and Natalia Pabón‑Mora1* Abstract Background: Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; how‑ ever, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results: We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci- specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes inB. frute- scens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions: Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
    [Show full text]
  • Ranunculaceae) for Asian and North American Taxa
    Mosyakin, S.L. 2018. Further new combinations in Anemonastrum (Ranunculaceae) for Asian and North American taxa. Phytoneuron 2018-55: 1–11. Published 13 August 2018. ISSN 2153 733X FURTHER NEW COMBINATIONS IN ANEMONASTRUM (RANUNCULACEAE) FOR ASIAN AND NORTH AMERICAN TAXA SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01004 Ukraine [email protected] ABSTRACT Following the proposed re-circumscription of genera in the group of Anemone L. and related taxa of Ranunculaceae (Mosyakin 2016, Christenhusz et al. 2018) and based on recent molecular phylogenetic and partly morphological evidence, the genus Anemonastrum Holub is recognized here in an expanded circumscription (including Anemonidium (Spach) Holub, Arsenjevia Starod., Tamuria Starod., and Jurtsevia Á. Löve & D. Löve) covering members of the “Anemone ” clade with x=7, but excluding Hepatica Mill., a genus well outlined morphologically and forming a separate subclade (accepted by Hoot et al. (2012) as Anemone subg. Anemonidium (Spach) Juz. sect. Hepatica (Mill.) Spreng.) within the clade earlier recognized taxonomically as Anemone subg. Anemonidium (sensu Hoot et al. 2012). The following new combinations at the section and subsection ranks are validated: Anemonastrum Holub sect. Keiskea (Tamura) Mosyakin, comb. nov . ( Anemone sect. Keiskea Tamura); Anemonastrum [sect. Keiskea ] subsect. Keiskea (Tamura) Mosyakin, comb. nov .; Anemonastrum [sect. Keiskea ] subsect. Arsenjevia (Starod.) Mosyakin, comb. nov . ( Arsenjevia Starod.); and Anemonastrum [sect. Anemonastrum ] subsect. Himalayicae (Ulbr.) Mosyakin, comb. nov. ( Anemone ser. Himalayicae Ulbr.). The new nomenclatural combination Anemonastrum deltoideum (Hook.) Mosyakin, comb. nov . ( Anemone deltoidea Hook.) is validated for a North American species related to East Asian Anemonastrum keiskeanum (T.
    [Show full text]
  • Green Leaf Perennial Catalog.Pdf
    Green Leaf Plants® A Division of Aris Horticulture, Inc. Perennials & Herbs 2013/2014 Visit us @ Green Leaf Plants® GLplants.com Green Leaf Plants® Perennial Management Teams Green Leaf Plants® Lancaster, Pennsylvania Green Leaf Plants® Bogotá, Colombia (Pictured Left to Right) Rich Hollenbach, Grower Manager and Production Planning/Inventory Control (Pictured Left to Right) Silvia Guzman, Farm Manager I Isabel Naranjo, Lab Manager I Juan Camilo Manager I Andrew Bishop, Managing Director I Sara Bushong, Customer Service Manager and Herrera, Manager of Latin American Operations & Sales Logistics Manager Cindy Myers, Human Resources and Administration Manager I Nancy Parr, Product Manager Customer Service Glenda Bradley Emma Bishop Jenny Cady Wendy Fromm Janis Miller Diane Lemke Yvonne McCauley [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Ext. 229 Ext. 227 Ext. 245 Ext. 223 Ext. 221 Ext. 231 Ext. 237 Management, Tech Support and New Product Development Brad Smith Sarah Rasch Sara Bushong, Nancy Parr, Product Mgr. Julie Knauer, Prod. Mgr. Asst Susan Shelly, Tech Support Melanie Neff, New Product Development [email protected] [email protected] C.S. Mgr. & Logistics Mgr. [email protected] [email protected] [email protected] [email protected] Ext. 228 800.232.9557 Ext. 5007 [email protected] Ext. 270 Ext. 288 Ext. 238 Ext. 273 Ext. 250 Varieties Pictured: Arctotis Peachy Mango™ Aster Blue Autumn® Colocasia Royal Hawaiian® DID YOU KNOW? ‘Blue Hawaii’ Customer service means more than answering the phone and Delphinium ‘Diamonds Blue’ Echinacea ‘Supreme Elegance’ taking orders.
    [Show full text]
  • Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
    Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse.
    [Show full text]
  • David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4
    American Journal of Botany 96(1): 96–109. 2009. O NE SIZE FITS ALL? M OLECULAR EVIDENCE FOR A COMMONLY INHERITED PETAL IDENTITY PROGRAM IN RANUNCULALES 1 David A. Rasmussen, 2 Elena M. Kramer, 3 and Elizabeth A. Zimmer 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 USA Petaloid organs are a major component of the fl oral diversity observed across nearly all major clades of angiosperms. The vari- able morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplifi ed by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3 ) and PISTILLATA (PI ) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specifi c across both Ranunculaceae and Berberidaceae. We conclude from this fi nding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological defi nitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms. Key words: APETALA3 ; MADS box genes; petal evolution; PISTILLATA ; Ranunculales.
    [Show full text]
  • “Don't Plant a Pest: Central Coast” Brochure
    G roundcovers & Perennials G roundcove rs & Perennials G roundcove rs & Perennials G a rdening green Many of the characteristics that make a G roundcove rs plant a good choice for the garden may Instead of periwinkle, wild ginger also make it a successful invader: & Perennials DON’T PLAN T: English ivy or Algerian ivy, (Asarum caudatum) Don’t California is a gardener’s dream. Our mild climate allows A California native, this Garden Plants Invasive Plants us to have fantastic gardens, showcasing a wide variety periwinkle evergreen groundcover has Easy to propagate Broad germination T RY THESE VARIETIES: of ornamental plants from DON’T PLAN T: (Vinca major) heart-shaped leaves and unusual Establish rapidly Colonizer all around the world. This aggressive grower pachysandra maroon flowers. Mature early Mature early iceplant or Hottentot fig Howitt, © 1999 Beatrice F. Calif. Academy of Sciences has trailing stems that Plant a But sometimes, our Abundant flowers Prolific seeds (Carpobrotus edulis) (Pachysandra terminalis) root wherever they touch bear’s foot hellebore garden plants “jump the Pest / disease tolerant Few natural predators Small mammals can carry seeds of Grows more slowly than Vinca the soil. This ability to and Hedera, but has a crisp, (Helleborus foetidus) fence” and invade natural iceplant from landscape settings to resprout from stem areas. These invasive nearby coastal dunes and other neat growth form. New foliage Unusual foliage and delicate, Invasive plants are by nature a regional problem. A plant fragments enables is bright green, changing to complex flowers. The intriguing plants can become serious sensitive areas. The vigorous Alfred Brousseau, © 1995 Br.
    [Show full text]
  • Functional Analyses of Genetic Pathways Controlling Petal Specification in Poppy Sinéad Drea1, Lena C
    RESEARCH ARTICLE 4157 Development 134, 4157-4166 (2007) doi:10.1242/dev.013136 Functional analyses of genetic pathways controlling petal specification in poppy Sinéad Drea1, Lena C. Hileman1,*, Gemma de Martino1 and Vivian F. Irish1,2,† MADS-box genes are crucial regulators of floral development, yet how their functions have evolved to control different aspects of floral patterning is unclear. To understand the extent to which MADS-box gene functions are conserved or have diversified in different angiosperm lineages, we have exploited the capability for functional analyses in a new model system, Papaver somniferum (opium poppy). P. somniferum is a member of the order Ranunculales, and so represents a clade that is evolutionarily distant from those containing traditional model systems such as Arabidopsis, Petunia, maize or rice. We have identified and characterized the roles of several candidate MADS-box genes in petal specification in poppy. In Arabidopsis, the APETALA3 (AP3) MADS-box gene is required for both petal and stamen identity specification. By contrast, we show that the AP3 lineage has undergone gene duplication and subfunctionalization in poppy, with one gene copy required for petal development and the other responsible for stamen development. These differences in gene function are due to differences both in expression patterns and co- factor interactions. Furthermore, the genetic hierarchy controlling petal development in poppy has diverged as compared with that of Arabidopsis. As these are the first functional analyses of AP3 genes in this evolutionarily divergent clade, our results provide new information on the similarities and differences in petal developmental programs across angiosperms. Based on these observations, we discuss a model for how the petal developmental program has evolved.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]