Mycoscience: Advance Publication doi: 10.47371/mycosci.2021.03.001 Short Communication (Received December 26, 2020; Accepted March 8, 2021) J-STAGE Advance Published Date: March 27, 2021

Short Communication

Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Shuai Jianga,b, Hong-Xu Mib , Hui-Jing Xiea , Xu Zhanga , Yun Chenb , Zhi-Qun Liangc, Nian-Kai Zenga,*

a Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China b Yinggeling Branch of Hainan Tropical Rainforest National Park, Baisha, Hainan

572800, China c College of Science, Hainan University, Haikou 570228, China

* Corresponding author. Hainan Medical University, Xueyuan Road, Longhua

District, Haikou, China.

E-mail address: [email protected] (N. K. Zeng).

Advance Publication

- 1 - Mycoscience: Advance Publication

ABSTRACT

Neoboletus infuscatus (, ) is described as a new species from Yinggeling of Hainan Tropical Rainforest National Park, southern China. It is morphologically characterized by a large basidioma with a nearly glabrous, brownish yellow, yellowish brown to pale brown pileus, pores orangish red when young, yellowish brown to brown when old, context and hymenophore staining blue when injured, a yellow with red punctuations, surfaces of the pileus and the stipe usually covered with a thin layer of white pruina when young. Phylogenetic analyses of DNA sequences from part of the 28S gene, the nuclear rDNA internal transcribed spacer (ITS) region, and part of the translation elongation factor 1-α gene (TEF1) also confirm that N. infuscatus forms an independent lineage within Neoboletus. Detailed morphological description, color photos of fresh basidiomata and line-drawings of microstructures are provided.

Keywords: molecular phylogeny, morphology, new taxon, , tropical China Publication

Advance

- 2 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Members of Boletaceae are diverse worldwide and attracted much attentions due to their ectomycorrhizal, edibility, toxicity and pharmaceutical potentialities (Roman, Claveria, & Miguel, 2005; Sitta & Floriani, 2008; Dentinger et al., 2010; Feng et al., 2012; Wu et al., 2013; Chen, Yang, Tolgor, & Li, 2016). With the development of molecular techniques, several new species were discovered. In addition, some species were reassessed and new genera were established to accommodate certain taxa in Boletaceae (Li, Feng, & Yang, 2011; Arora & Frank, 2014; Zeng, Wu, Li, Liang, & Yang, 2014; Gelardi, Simonini, Ercole, Davoli, & Vizzini, 2015; Farid et al., 2018). Neoboletus Gelardi, Simonini & Vizzini was newly segregated from Boletus L. and typified by N. luridiformis (Rostk.) Gelardi, Simonini & Vizzini (Vizzini, 2014). This treatment was phylogenetically supported (Binder & Hibbett, 2006; Nuhn, Binder, Taylor, Halling, & Hibbett, 2013; Arora & Frank, 2014; Urban & Klofac, 2015) and accepted by more and more researchers (Urban & Klofac, 2015; Sarwar, Jabeen, Khalid, & Dentinger, 2016; Gelardi, 2017; Chai et al., 2019; Gelardi et al., 2019; Vadthanarat, Lumyong, & Raspé, 2019; Kuo & Ortiz-Santana, 2020). The genus is characterized by stipitate-pileate or sequestrate basidiomata; when basidiomata stipitate-pileate, pores brown, dark brown toPublication reddish brown when young, becoming yellow when old, tubes always yellow, hymenophore and context staining blue, and stipe usually covered with punctuations (Vizzini, 2014; Wu et al., 2016b; Chai et al., 2019). Yinggeling of Hainan Tropical Rainforest National Park, southern China is considered a hotspot of biodiversity (Jiang et al., 2013). In the past decade, thirteen new species of macrofungi including boletes were described in the region (Liang, An, Jiang, Su, & Zeng, 2016; Liang, Chai, Jiang, Ye, & Zeng, 2017a; Liang, Su, Jiang, & Zeng, 2017b; An, Liang, Jiang, Su, & Zeng, 2017; Zeng, Liang, Tang, Li, & Yang, 2017Advance; Zeng et al., 2018; Chai, Liang, Jiang, Fu, & Zeng, 2018; Chai et al., 2019; Xue et al., 2019; Wang et al., 2020; Xie et al., 2020). With further field investigations, more new species are expected to be discovered. Recently, we encountered some specimens in Yinggeling, which of the genus proved to be a new species of genus Neoboletus by morphological and molecular phylogenetic analyses. Therefore, a detailed description of the new species was presented.

- 3 - Mycoscience: Advance Publication

Fresh specimens were photographed in the field, a collection number was given for each specimen, and a detailed record of morphological characters of fresh fruit body was also made, then the specimens were dried with air flow dryer and deposited in the Fungal Herbarium of Hainan Medical University (FHMU), Haikou City, Hainan Province of China. Color codes are from Kornerup and Wanscher (1981). Sections of the pileipellis on the pileus were cut perpendicularly and halfway between the center and margin of the pileus. Sections of the stipitipellis on the stipe were taken from the middle part along the longitudinal axis of the stipe. KOH (5%) was used as a mounting medium for microscopic studies. All the microscopic structures were observed and measured with an optical light microscope (CX23, Olympus, Tokyo, Japan), then drawn freehand from rehydrated material. The number of measured basidiospores is given as n/m/p, where n represents the total number of basidiospores measured from m basidiomata of p collections. Dimensions of basidiospores are given as (a)b–c(d), where the range b–c represents a minimum of 90% of the measured values (5th to 95th percentile), and extreme values (a and d), whenever present (a < 5th percentile, d > 95th percentile), are in parentheses. Q refers to the length/width ratio of basidiospores; Qm refers to the averagePublication Q of basidiospores and is given with standard deviation. Total genomic DNA was obtained with Plant Genomic DNA Kit (TIANGEN Company, Beijing, China) from materials dried with silica gel according to the manufacturer’s instructions. Primer pairs used for amplifying the nuclear ribosomal large subunit RNA (28S) were LROR/LR5 (Vilgalys & Hester, 1990; James et al., 2006), ITS5/ITS4 (White, Bruns, Lee, & Taylor, 1990) for the nuclear rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS),Advance and EF1-α-F/EF1-α-R (Mikheyev, Mueller, & Abbot, 2006) for the translation elongation factor 1-α gene (TEF1). PCR was performed in a total volume of 25 μL containing 13 μL GoTaq® Green Master Mix (Promega, Madison, USA), 2 μL per primer (10 mM), 2 μL DNA template and 8 μL nuclease-free water. PCR reactions were performed with 4 min initial denaturation at 95 °C, followed by 34 cycles of denaturation at 94 °C for 30 s, annealing at 50 °C (28S and ITS) or 53 °C (TEF1) for

- 4 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

30 s and extension at 72 °C for 120 s, a final extension at 72 °C for 7 min. PCR products were checked in 1% (w/v) agarose gels, and positive reactions with a bright single band were purified and directly sequenced using an ABI 3730xl DNA Analyzer (Guangzhou Branch of BGI, Guangzhou, China) with the same primers used for PCR amplifications. Forward or reverse sequences were compiled with BioEdit (Hall, 1999). Assembled sequences were deposited in GenBank (Table 1). Nine sequences (four of 28S, one of ITS, four of TEF1) from four collections were newly generated and deposited in GenBank (Table 1). For the concatenated data set, the 28S, ITS, and TEF1 sequences were aligned with selected sequences from GenBank and previous studies (Table 1). subrufus N.K. Zeng, H. Chai & S. Jiang was chosen as outgroup based on the phylogeny in Chai et al. (2019). Single- gene phylogenetic trees based on the 28S, ITS, and TEF1 fragments, respectively, were analyzed to test for phylogenetic conflict. The topologies of the phylogenetic trees based on a single gene were almost identical, indicating that the phylogenetic signals present in the different gene fragments were not in conflict. Then, the sequences of the different genes were aligned using MUSCLE (Edgar, 2004), and alignments were purged from unreliably alignedPublication positions and gaps using Gblocks (Castresana, 2000). The sequences of the different genes were concatenated using Phyutility v2.2 for further analyses (Smith & Dunn, 2008). The combined nuclear data set (28S + ITS + TEF1) was analyzed by using Maximum Likelihood (ML) and Bayesian Inference (BI). Maximum likelihood tree generation and bootstrap analyses were performed with the program RAxML 7.2.6 (Stamatakis, 2006) running 1,000 replicates combined with a ML search. A bayesian analysis with MrBayes 3.1 (Huelsenbeck & Ronquist, 2005) implementing the MarkovAdvance Chain Monte Carlo (MCMC) technique and parameters predetermined with MrModeltest 2.3 (Nylander, 2004) was performed. The model of evolution used in the Bayesian analysis was determined with MrModeltest 2.3 (Nylander, 2004). For the three-gene combined data set of Neoboletus, the best-fit likelihood models of 28S, ITS and TEF1 were GTR+I+G, HKY+G and SYM +G, respectively. Bayesian analysis was repeated for 5.4 million generations and sampled every 100 generations;

- 5 - Mycoscience: Advance Publication

trees sampled from the first 25% of the generations were discarded as burn-in; the average standard deviation of split frequencies was restricted to be below 0.01, and Bayesian posterior probabilities (PP) were then calculated for a majority consensus tree of the retained Bayesian trees. The three-locus data set (28S + ITS + TEF1) consisted of 59 taxa and 2154 nucleotide sites. The aligned data set was submitted to TreeBASE (S27329). The topologies of phylogenetic trees based on the combined data set generated from ML and BI analyses were almost identical, while statistical supports showed slight differences. The phylogram with branch lengths generated from RAxML, including the support values, is shown in Fig. 1. The molecular phylogenetic analyses show that the collections numbered FHMU3370, FHMU3371, FHMU3372, respectively, grouped together with a high statistical support (BS=100, PP =1), forming an independent lineage within Neoboletus (Fig. 1).

Taxonomy Publication Neoboletus infuscatus N.K. Zeng, S. Jiang & Zhi Q. Liang, sp. nov. Figs 2, 3. MycoBank no.: MB 838173.

Diagnosis: Characterized by a large basidioma with a nearly glabrous, brownish yellow, yellowish brown to pale brown pileus, pores orangish red when young, yellowish brown to brown when old, context and hymenophore staining blue when injured, a yellow stipe with red punctuations, surfaces of pileus and stipe usually coveredAdvance with a thin layer of white pruina when young, and smaller basidiospores measuring 8.5–10.5 × 3.5–4.5 μm. Type: CHINA, Hainan Province, Ledong County, Yinggeling Branch of Hainan Tropical Rainforest National Park, Nanfaling, elev. 560 m, gregarious on the ground in forests dominated by fagaceous trees, 24 Apr 2019, N.K. Zeng4031 (holotype, FHMU3372).

- 6 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Gene sequences ex-holotype: MW293787 (28S), MW307257 (TEF1). Etymology: Latin “infuscatus”, referring to the species having a pale brown pileus. Basidiomata medium-sized to large. Pileus 6–16 cm diam, subhemispherical when young, then convex to applanate; margin decurved, sometimes slightly uplifted when old; surface dry, nearly glabrous, brownish yellow (1B3), yellowish brown (3B4) to pale brown (3B7), sometimes covered with a thin layer of white pruina when young; context 1.8–2 cm thick in the center of the pileus, yellowish white (1A2), changing blue (21A3) quickly when injured. Hymenophore poroid, slightly depressed around the stipe; pores stuffed in early stages, then angular, about 2 mm diam, orangish red (6A3) when young, then yellowish brown (4B3) to brown (5D4), changing dark blue (6E1) to bluish black (6F1), then blackening (26 F1) slowly when injured; tubes 0.6– 1.2 cm in length, pale yellow (1A3) to yellow (2A3), changing blue (21B3) quickly when injured. Stipe 9–11 × 1.8–2.5 cm, central, subcylindrical, solid, usually enlarged at base (3.5–4 cm); surface yellow (1A3) to yellowish brown (1A4), covered with red (7B4) punctuations, sometimes with a thin layer of white pruina in the lower part of stipe; conext yellowish (1A3) to yellow (1A5),Publication changing blue (21B3) quickly when injured. Basal mycelium white. Odor indistinct. Basidia 31.5–39.5 × 9.5–12.5 μm, clavate, thin- to slightly thick-walled (up to 0.5 μm), 4-spored, colorless to yellowish in KOH; sterigmata 4–5 μm long. Basidiospores [140/7/3] (8–)8.5–10.5(–11) × (3–)3.5–4.5(–5) μm, Q = (2–)2.22–2.86(–3.33), Qm = 2.48 ± 0.22, subfusiform to ellipsoid, yellowish brown in KOH, smooth. Hymenophoral trama boletoid, composed of thin-walled hyphae, yellowish in KOH, 3–8 μm wide. Cheilocystidia 20–38 × 7–10 μm, fusiform or subfusiform, thin-walled, colorlessAdvance to yellowish in KOH, no encrustations. Pleurocystidia 33–52 × 8–12 μm, fusiform or subfusifom, thin-walled, colorless to yellowish in KOH, no encrustations. Pileipellis a trichoderm 100–110 μm thick, composed of more or less vertically arranged, pale yellowish brown in KOH, thin-walled hyphae 4–6 μm diam; terminal cells 15–55 × 4–6 μm, narrowly clavate or subcylindrical, with obtuse apex. Pileal trama made up of hyphae 4–8 μm diam, slightly thick-walled (up to 0.5 μm), colorless

- 7 - Mycoscience: Advance Publication

to yellowish in KOH. Stipitipellis a hymeniform about 130 μm thick, composed of thin-walled emergent hyphae, colorless to yellowish in KOH, with clavate, subclavate, fusiform or subfusiform terminal cells (18–47 × 6–9 μm). Stipe trama composed of parallel hyphae 3–10 μm wide, thin-to slightly thick-walled (up to 0.5

μm), yellowish in KOH. Clamp connections absent in all tissues. Habitat and distribution: Gregarious on the ground in forests dominated by fagaceous trees, and currently known only from southern China (Yinggeling of Hainan Tropical Rainforest National Park, Hainan). Additional materials examined: CHINA. Hainan Province, Ledong County, Yinggeling Branch of Hainan Tropical Rainforest National Park, Nanfaling, elev. 560 m, 6 May 2018, N.K. Zeng3352 (FHMU3370); same location, 24 Apr 2019, N.K. Zeng4030 (FHMU3371). Phylogenetically, our specimens were placed into the genus Neoboletus based on a combined data set (28S + ITS + TEF1), and the morphological features of them also match the concept of Neoboletus (Vizzini, 2014; Chai et al., 2019; Gelardi et al., 2019). Moreover, N. infuscatus is genetically distant from other taxa of Neoboletus (Fig. 1). Publication Morphologically, B. craspedius Massee, possibly a member of Neoboletus, N. luridiformis and N. obscureumbrinus (Hongo) N.K. Zeng, H. Chai & Zhi Q. Liang also have large basidiomata. However, Singaporean B. craspedius has a pileus tinged with reddish, a crimson stipe and sometimes with crimson reticulations at the apex, wider basidiospores measuring 9–11 × 4.5–5 μm, and narrower cystidia (Corner, 1972); N. luridiformis differs from N. infuscatus in a dark brown, reddish brown to yellowish brown pileus, red pores, longer basidiospores measuring (12.8–)13.3– 15.5(Advance–16.5) × 4.2–5.5 μm, and a distribut ion in Europe (Vizzini, 2014); N. obscureumbrinus can be distinguished by a brown to dark brown, subtomentose pileus, a stipe light yellow to dark orange in upper part, brown to brownish orange in lower part, and covered with brown to dark brown scales on the surface, and larger basidiospores measuring 10–12 × 4–5 μm (Wu et al., 2016a). Moreover, N. magnificus (W.F. Chiu) Gelardi, Simonini & Vizzini, N. erythropus var.

- 8 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

novoguineensis (Hongo) Blanco-Dios and N. sinensis (T.H. Li & M. Zang) Gelardi, Simonini & Vizzini are somewhat similar to N. infuscatus, however, N. magnificus, a species originally described from Yunnan Province of southwestern China, has a rose red to light red to coffee brown, subtomentose pileus, and staining dark blue quickly when injured, a stipe buttercup yellow to maize yellow at the apex, red to dark red towards the base, staining dark blue quickly when touched, light yellow basal mycelium, and larger basidiospores mearuring (9–)10–13(–15) × 4–5 (–5.5) μm (Wu et al., 2016b); N. erythropus var. novoguineensis has a brown to dark brown, minutely tomentose pileus, a stipe densely covered with red dots with a brown strigose base, larger basidiospores mearuring 9.5–15 × 4–5.5 μm, and a distribution in New Guinea (Hongo, 1973); N. sinensis was also described from Hainan Province of southern China, it can be easily distinguished from N. infuscatus by a cherry red and reticulate stipe, larger basidiospores measuring 13–19 × 5–6.5 μm, and broadly fusiform pleurocystidia (Zang, Li, & Peterson, 2001). The brownish yellow, yellowish brown to pale brown pileus of N. infuscatus is also reminiscent of Japanese B. bannaensis Har. Takah. and Papua New Guinean B. manicus R. Heim, both of them in need of generic placement confirmation (Corner, 1972;Publication Takahashi, 2007), however, B. bannaensis has a context turing rufescent and light blue when injured, short tubes, and smaller basidiospores mearuring 6.5–9 × 3.5–4 μm (Takahashi, 2007); B. manicus has a stipe with red reticulation, pores red orange or crimson when old, and surfaces of pileus and stipe without white pruina when young (Corner, 1972). Although Caloboletus guanyui N.K. Zeng, H. Chai & S. Jiang, a species orginally described from Japan, is not a member of Neoboletus, it shares several common morphological features wtih N. infuscatus. In order to identify the two taxa in the field, herein their morphologicalAdvance features were also compared. According to the descriptions of Chai et al. (2019), C. guanyui differs from N. infuscatus in smaller basidiomata, surfaces of pileus and stipe usually without a layer of pruina, a white context, a stipe densely covered with pale brown, brown to reddish brown squamules, and context in stipe unchanging in color when injured.

- 9 - Mycoscience: Advance Publication

Acknowledgments

We are grateful to the forest rangers (Yinggeling Branch of Hainan Tropical Rainforest National Park) for their kind help during the field investigations. The study was supported by the Hainan Provincial Natural Science Foundation of China (No. 820RC633), and the National Nature Science Foundation of China (Nos. 31760008, 31560005).

References

An, D. Y., Liang, Z. Q., Jiang, S., Su, M. S., & Zeng, N. K. (2017). Cantharellus hainanensis, a new species with a smooth hymenophore from tropical China. Mycoscience, 58, 438–444. https://doi.org/10.1016/j.myc.2017.06.004. Arora, D., & Frank, J. L. (2014). Clarifying the butter boletes: a new genus, Butyriboletus, is established to accommodate Boletus sect. Appendiculati, and six new species are described. Mycologia, 106, 464–480. https://doi.org/10.3852/13-052. Binder, M., & Hibbett, D. S. (2006). MolecularPublication systematics and biological diversification of Boletales. Mycologia, 98, 971–981. https://doi.org/10.1080/15572536.2006.11832626. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–

552. https://doi.org/10.1093/oxfordjournals.molbev.a026334. Chai, H., Liang, Z. Q., Jiang, S., Fu, X. L., & Zeng, N. K. (2018). Lanmaoa rubriceps, a new bolete from tropical China. Phytotaxa, 347, 71–80. Advancehttps://doi.org/10.11646/phytotaxa.347.1.4. Chai, H., Liang, Z. Q., Xue, R., Jiang, S., Luo, S. H., Wang, Y., Wu, L. L., Tang, L. P., Chen, Y., Hong, D., & Zeng, N. K. (2019). New and noteworthy boletes from subtropical and tropical China. Mycokeys, 46, 55–96. https://doi.org/10.3897/mycokeys.46.31740. Chen, Z. H., Yang, Z. L., Tolgor, B., & Li, T. H. (2016). Poisonous mushrooms:

- 10 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

recognition and poisoning treatment. Beijing: Science Press. Corner, E. J. H. (1972). Boletus in Malaysia. Singapore: Government Printer. Dentinger, B. T., Ammirati, J. F., Both, E. E., Desjardin, D. E., Halling, R. E., Henkel, T. W., Moreau, P. A., Nagasawa, E., Soytong, K., Taylor, A. F. S., Walting, R., Moncalco, J. M., & McLaughlin, D. J. (2010). Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Molecular Phylogenetics and Evolution, 57, 1276–1292. https://doi.org/10.1016/j.ympev.2010.10.004. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340. Farid, A., Gelardi, M., Angelini, C., Franck, A. R., Costanzo, F., Kaminsky, L., Ercole, E., Baroni, T. J., White, A. L., Garey, J. R., Smith, M. E., & Vizzini, A. (2018). Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides. FUSE, 2, 341–359. https://doi.org/10.3114/fuse.2018.02.10Publication. Feng, B., Xu, J. P., Wu, G., Zeng, N. K., Li, Y. C., Tolgor, B., Kost, G. W., & Yang, Z. L. (2012). DNA sequence analyses reveal abundant diversity, endemism and evidence for Asian origin of the porcini mushrooms. PLoS One, 7, e37567. https://doi.org/10.1371/journal.pone.0037567. Gelardi, M. (2017). Contribution to the knowledge of Chinese boletes. II: Aureoboletus thibetanus s.l., Neoboletus brunneissimus, Pulveroboletus macrosporus and Retiboletus kauffmanii (Part I). Rivista Micologica Romana, Advance102, 13–30. Gelardi, M., Angelini, C., Costanzo, F., Dovana, F., Ortiz-Santana, B. & Vizzini, A. (2019). Neoboletus antillanus sp. nov. (Boletaceae), first report of a red-pored bolete from the Dominican Republic and insights on the genus Neoboletus. MycoKeys, 49, 73–97. https://doi.org/10.3897/mycokeys.49.33185. Gelardi, M., Simonini, G., Ercole, E., Davoli, P., & Vizzini, A. (2015). Cupreoboletus

- 11 - Mycoscience: Advance Publication

(Boletaceae, Boletineae), a new monotypic genus segregated from Boletus sect. Luridi to reassign the Mediterranean species B. poikilochromus. Mycologia, 107, 1254–1269. https://doi.org/10.3852/15-070. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29. Halling, R. E., Nuhn, M., Fechner, N. A., Osmundson, T. W., Soytong, K., Arora, D.,

Hibbett, D. S., & Binder, M. (2012). Sutorius: a new genus for Boletus eximius. Mycologia, 104, 951–961. https://doi.org/10.3852/11-376. Hongo, T. (1973). Enumeration of the Hygrophoraceae, Boletaceae and Strobilomycetaceae. Bulletin of the National Science Museum Tokyo, 16, 537– 557. Huelsenbeck, J. P., & Ronquist, F. (2005). Bayesian analysis of molecular evolution using MrBayes. In: R. Nielsen (Ed.), Statistical methods in molecular evolution (pp. 183–226 ). New York: Springer. https://doi.org/10.1007/0-387-27733-1_7. James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V., Cox, C. J., Celio, G., Gueidan, C., Fraker, E., MiadlikowskaPublication, J., Lumbsch, H. T., Rauhut, A., Reeb, V., Arnold, A. E., Amtoft, A., Stajich, J. E., Hosaka, K., Sung, G. H., Johnson, D., O’Rourke, B., Crockett, M., Binder, M., Curtis, J. M., Slot, J. C., Wang, Z., Wilson, A. W., Schüßler, A., Longcore, J. E., O’Donnell, K., Mozley- Standridge, S., Porter, D., Letcher, P. M., Powell, M. J., Taylor, J. W., White, M. M., Griffith, G. W., Davies, D. R., Humber, R. A., Morton, J. B., Sugiyama, J., Rossman, A. Y., Rogers, J. D., Pfister, D. H., Hewitt, D., Hansen, K., Hambleton, S., Shoemaker, R. A., Kohlmeyer, J., Volkmann-Kohlmeyer, B., AdvanceSpotts, R. A., Serdani, M., Crous, P . W., Hughes, K. W., Matsuura, K., Langer, E., Langer, G., Untereiner, W. A., Lücking, R., Büdel, B., Geiser, D. M., Aptroot, A., Diederich, P., Schmitt, I., Schultz, M., Yahr, R., Hibbett, D. S., Lutzoni, F., McLaughlin, D. J., Spatafora, J. W., & Vilgalys, R. (2006). Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature, 443, 818–822. https://doi.org/10.1038/nature05110.

- 12 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Jiang, H. S., Chen, B. L., Zhou, Y. D., Wang, C. D., Fang, L., & Luo, Y. K. (2013). Biodiversity and conservation of Hainan Yinggeling Nature Reserve. Beijing: China Forestry Press. Kornerup, A., & Wanscher, J. H. (1981). Taschenlexikon der Farben. 3. Aufl. Göttingen: Muster-Schmidt Verlag. Kuo, M., & Ortiz-Santana, B. (2020). Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia, 112, 197–211. https://doi.org/10.1080/00275514.2019.1685351. Li, Y. C., Feng, B., & Yang, Z. L. (2011). Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Diversity, 49, 125– 143. https://doi.org/10.1007/s13225-011-0096-y. Liang, Z. Q., An, D. Y., Jiang, S., Su, M. S., & Zeng, N. K. (2016). Butyriboletus hainanensis (Boletaceae, Boletales), a new species from tropical China. Phytotaxa, 267, 256–262. http://dx.doi.org/10.11646/phytotaxa.267.4.2. Liang, Z .Q., Chai, H., Jiang, S., Ye, Z. K., & Zeng, N. K. (2017a). The genus Xanthoconium (Boletaceae, Boletales) in tropical China. Phytotaxa, 295, 246– 254. https://doi.org/10.11646/phytotaxa.295.3.5Publication. Liang, Z. Q., Su, M. S., Jiang, S., & Zeng, N. K. (2017b). Marasmius campestris sp. nov. (Marasmiaceae, Agaricales) from tropical China based on morphological and molecular evidence. Mycoscience, 58, 77–84. http://dx.doi.org/10.1016/j.myc.2016.10.003. Mikheyev, A. S., Mueller, U. G., & Abbot, P. (2006). Cryptic sex and many-to-one coevolution in the -growing ant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 103, 10702–10706. Advancehttps://doi.org/10.1073/pnas.0601441103 . Nuhn, M. E., Binder, M., Taylor, A. F. S., Halling, R. E., & Hibbett, D. S. (2013). Phylogenetic overview of the Boletineae. Fungal Biology, 117, 479–511. http://dx.doi.org/10.1016/j.funbio.2013.04.008. Nylander, J. A. A. (2004). MrModeltest 2.3. Program distributed by the author. Uppsala: Evolutionary Biology Center, Uppsala University.

- 13 - Mycoscience: Advance Publication

Raspé, O., Vadthanarat, S., Kesel, A. D., Degreef, J., Hyde, K. D., & Lumyong, S. (2016). Pulveroboletus fragrans, a new Boletaceae species from Northern Thailand, with a remarkable aromatic odor. Mycological Progress, 15, 38. https://doi.org/10.1007/s11557-016-1179-7. Roman, M. D., Claveria, V., & Miguel, A. M. D. (2005). A revision of the descriptions of ectomycorrhizas published since 1961. Mycological Research, 109, 1063–1104. https://doi.org/10.1017/S0953756205003564. Sarwar, S., Jabeen, S., Khalid, A. N., & Dentinger, B. M. (2016). Molecular phylogenetic analysis of fleshy pored mushrooms: and Hortiboletus rubellus from western Himalayan range of Pakistan. Pakistan Journal of Botany, 48, 2077–2083. Sitta, N., & Floriani, M. (2008). Nationalization and globalization trends in the wild mushroom commerce of Italy with emphasis on porcini ( and allied species). Economic Botany, 62, 307–322. https://doi.org/10.1007/s12231-008-9037-4. Smith, S. A., & Dunn, C. W. (2008). Phyutility: a phyloinformatics tool for trees, alignments and molecular data. BioinformationPublication, 24, 715–716. https://doi.org/10.1093/bioinformatics/btm619. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688– 2690. https://doi.org/10.1093/bioinformatics/btl446. Takahashi, H. (2007). Five new species of the Boletaceae from Japan. Mycoscience, 48, 90–99. https://doi.org/10.1007/s10267-006-0332-6p. Urban, A., & Klofac, W. (2015). Neoboletus xanthopus, a sibling species of AdvanceNeoboletus luridiformis, and similar boletes with yellowish pileus colours. Sydowia, 67, 175–187. https://doi.org/10.12905/0380.sydowia67-2015-0175. Vadthanarat, S., Lumyong, S., & Raspé, O. (2019). Cacaoporus, a new Boletaceae

genus, with two new species from Thailand. MycoKeys, 54, 1–29. https://doi.org/10.3897/mycokeys.54.35018. Vadthanarat, S., Raspé, O., & Lumyong, S. (2018). Phylogenetic affinities of the

- 14 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

sequestrate genus Rhodactina (Boletaceae), with a new species, R. rostratispora from Thailand. MycoKeys, 29, 63–80. https://doi.org/10.3897/mycokeys.29.22572. Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246. https://doi.org/10.1128/jb.172.8.4238- 4246.1990. Vizzini, A. (2014). Neoboletus Gelardi, Simonini & Vizzini, gen. nov. Index Fungorum, 192, 1. Wang, Y., Su, M. S., Jiang, S., Xue, R., Wu, L. L., Xie, H. J., Zhang, Y. Z., Liang, Z.Q., & Zeng, N. K. (2020). The genus Hourangia in China and a descripton of Aureoboletus erythraeus sp. nov. Phytotaxa, 472, 87–106. https://doi.org/10.11646/phytotaxa. 472.2.1. White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp: 315–322Publication). New York: Academic Press. https://doi.org/10.1016/B978-0-12-372180-8.50042-1. Wu, G., Feng, B., Xu, J., Zhu, X. T., Li, Y. C., Zeng, N. K., Hosen, M. I., & Yang, Z. L. (2014). Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity, 69, 93–115. https://doi.org/10.1007/s13225-014-0283-8. Wu, G., Li, Y. C., Zhu, X. T., Zhao, K., Han, L. H., Cui, Y. Y., Li, F., Xu, J. P., & Yang, Z. L. (2016a). One hundred noteworthy boletes from China. Fungal AdvanceDiversity, 81, 25–188. https://doi.org/ 10.1007/s13225-016-0375-8. Wu, G., Zhao, K., Li, Y. C., Zeng, N. K., Feng, B., Halling, R. E., & Yang, Z. L. (2016b). Four new genera of the fungal family Boletaceae. Fungal Diversity, 81, 1–24. https://doi.org/10.1007/s13225-015-0322-0. Wu, X. L., Mao, X. L., Tolgor, B., Song, B., Li, T. H., Zhao, Y. X., Chen, S. L., Zeng, N. K., Huang, S. Z., Wen, T. C., & Deng, C. Y. (2013). Medicinal fungi of

- 15 - Mycoscience: Advance Publication

China. Beijing: Science Press. Xie, H. J., Lin, W. F., Jiang, S., Xue, R., Wu, L. L., Zhang, Y. Z., Liang, Z. Q., Zeng, N. K., & Su, M. S. (2020). Two new species of Hortiboletus (Boletaceae,

Boletales) from China. Mycological Progress, 19, 1377–1386. https://doi.org/10.1007/ s11557-020-0163 4-z. Xue, R., Wu, L. L., Jiang, S., Hao, Y. J., Chai, H., Liang, Z. Q., Zeng, N. K. & Su, M. S. (2019). Two new species of the genus Leccinellum (Boletaceae, Boletales) from the south of China. Phytotaxa, 411, 93–104. https://doi.org/10.11646/phytotaxa.411.2.1. Zang, M., Li, T. H., & Peterson, R. H. (2001). Five new species of Boletaceae from China. Mycotaxon, 80, 481–487. Zeng, N. K., Chai, H., Jiang, S., Xue, R., Wang, Y., Hong, D., & Liang, Z. Q. (2018). Retiboletus nigrogriseus and Tengioboletus fujianensis, two new boletes from the south of China. Phytotaxa, 367, 45–54. https://doi.org/10.11646/phytotaxa.367.1.5. Zeng, N. K., Liang, Z. Q., Tang, L. P., Li, Y. C., & Yang, Z. L. (2017). The genus Pulveroboletus (Boletaceae, Boletales)Publication in China. Mycologia, 109, 422–442. https://doi.org/10.1080/00275514.2017.1331689. Zeng, N. K., Wu, G., Li, Y. C., Liang, Z. Q., & Yang, Z. L. (2014). Crocinoboletus, a new genus of Boletaceae (Boletales) with unusual boletocrocin polyene pigments. Phytotaxa, 175, 133–140. http://dx.doi.org/10.11646/phytotaxa.175.3.2.

Advance

- 16 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Figure legends

Publication

Fig. 1. Phylogenetic placement of Neoboletus infuscatus inferred from a combined (rDNA 28S, ITS, and TEF1) data set using RAxML. BS ≥ 50% and PP ≥ 0.95 are indicated above or below the branches as RAxML BS/PP.

Advance

- 17 - Mycoscience: Advance Publication

Publication

Fig. 2. Basidiomata of Neoboletus infuscatus. A–C: FHMU3370. D: FHMU3371; E, F: FHMU3372 (holotype). Photos by N. K. Zeng.

Advance

- 18 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

Publication

Advance Fig. 3. Microscopic features of Neoboletus infuscatus (FHMU3372, holotype). A: Basidia. B: Basidiospores. C: Cheilocystidia. D: Pleurocystidia. E: Pileipellis. F: Stipitipellis. Bars: 10 μm. Drawings by S. Jiang.

- 19 - Mycoscience: Advance Publication

Table 1 Taxa, vouchers, locations, and GenBank accession numbers of DNA sequences used in this study.

GenBank accession no. Taxon Voucher Locality References 28S ITS TEF1

Neoboletus brunneissimus HKAS50538 Yunnan, SW China KM605138 — KM605150 Wu et al. 2016b

Neoboletus brunneissimus HKAS52660 Yunnan, SW China KF112314 — KF112143 Wu et al. 2014

Neoboletus brunneissimus HKAS57451 Yunnan, SW China KM605137 — KM605149 Wu et al. 2016b

Neoboletus brunneissimus OR0249 China — — MG212595 Vadthanarat et al.

2018

Neoboletus erythropus VDKO0690 Belgium — — KT824048 Raspé et al. 2016

Neoboletus ferrugineus HKAS77617 Guangdong, southern KT990595 — KT990788 Wu et al. 2016a

China

Neoboletus ferrugineus HKAS77718 Guangdong, southern KT990596 — KT990789 Wu et al. 2016a

China

Neoboletus flavidus HKAS58724 Yunnan, SW China KU974140 — KU974137 Wu et al. 2016a

Neoboletus flavidus HKAS59443 Yunnan, SW China KF974139 — KU974136 Wu et al. 2016a

Neoboletus hainanensis HKAS59469 Yunnan, SW China KF112359 — KF112175 Wu et al. 2014

Neoboletus hainanensis HKAS63515 Yunnan, SW China KT990614 — KT990808 Wu et al. 2016a

Neoboletus hainanensis HKAS74880 Yunnan, SW China KT990597 — KT990790 Wu et al. 2016a

Neoboletus hainanensis HKAS90209 Hainan, southern China KT990615 — KT990809 Wu et al. 2016a

Neoboletus hainanensis N.K. Zeng2128 Yunnan, SW China MH879690 — MH879719 Chai et al. 2019 (FHMU1392) Publication Neoboletus infuscatus N.K. Zeng3352 Hainan, southern MW293785 MW293793 MW307255 This study

(FHMU3370) China

Neoboletus infuscatus N.K. Zeng4030 Hainan, southern MW293786 — MW307256 This study

(FHMU3371) China

Neoboletus infuscatus N.K. Zeng4031 Hainan, southern MW293787 — MW307257 This study

(FHMU3372) China

Neoboletus junquilleus AF2922 France — — MG212596 Vadthanarat et al. 2018 Neoboletus luridiformis AT2001087 Berkshire, England JQ326995 — JQ327023 Halling et al. 2012

Neoboletus magnificus HKAS54096 Yunnan, SW China KF112324 — KF112149 Wu et al. 2014

Neoboletus magnificus HKAS74939 Yunnan, SW China KF112320 — KF112148 Wu et al. 2014

Neoboletus magnificus N.K. Zeng4038 Hainan, southern MW293788 — MW307258 This study Advance(FHMU3373) China Neoboletus multipunctatus HKAS76851 Hainan, southern China KF112321 — KF112144 Wu et al. 2014

Neoboletus multipunctatus N.K. Zeng2498 Hainan, southern China MH879693 MH885354 MH879722 Chai et al. 2019

(FHMU1620)

Neoboletus multipunctatus OR0128 Thailand — — MH614734 Vadthanarat et al.

2019

Neoboletus obscureumbrinus CMU58-ST-0237 Thailand KX017292 KX017301 — GenBank

Neoboletus obscureumbrinus HKAS63498 Yunnan, SW China KT990598 — KT990791 Wu et al. 2016a

- 20 - Neoboletus infuscatus, a new tropical bolete from Hainan, southern China

GenBank accession no. Taxon Voucher Locality References 28S ITS TEF1

Neoboletus obscureumbrinus HKAS77774 Yunnan, SW China — — KT990792 Wu et al. 2016a

Neoboletus obscureumbrinus HKAS89014 Yunnan, SW China KT990599 — KT990793 Wu et al. 2016a

Neoboletus obscureumbrinus HKAS89027 Yunnan, SW China KT990600 — KT990794 Wu et al. 2016a

Neoboletus obscureumbrinus N.K. Zeng3091 Hainan, southern China MH879694 MH885355 MH879723 Chai et al. 2019

(FHMU2052)

Neoboletus obscureumbrinus N.K. Zeng3094 Hainan, southern China MH879695 MH885356 MH879724 Chai et al. 2019

(FHMU2055)

Neoboletus obscureumbrinus N.K. Zeng3098 Hainan, southern China MH879696 MH885357 MH879725 Chai et al. 2019

(FHMU2059)

Neoboletus obscureumbrinus OR0553 Thailand — — MK372282 Vadthanarat et al.

2019

Neoboletus rubriporus HKAS57512 Yunnan, SW China KF112327 — KF112151 Wu et al. 2014

Neoboletus rubriporus HKAS83026 Yunnan, SW China KT990601 — KT990795 Wu et al. 2016a

Neoboletus rubriporus HKAS89174 Yunnan, SW China KT990602 — KT990796 Wu et al. 2016a

Neoboletus rubriporus HKAS89181 Yunnan, SW China KT990603 — KT990797 Wu et al. 2016a

Neoboletus rubriporus HKAS90210 Yunnan, SW China KT990604 — KT990798 Wu et al. 2016a

Neoboletus rubriporus MHKMU-L.P. Yunnan, SW China — MH885358 MH879726 Chai et al. 2019

Tang1958

Neoboletus sanguineoides HKAS55440 Yunnan, SW China KF112315 — KF112145 Wu et al. 2014

Neoboletus sanguineoides HKAS57766 Yunnan, SW China KT990605 — KT990799 Wu et al. 2016a

Neoboletus sanguineoides HKAS63530 Sichuan, SW China KT990607 — KT990801 Wu et al. 2016a

Neoboletus sanguineoides HKAS74733 Yunnan, SW China KT990606 — KT990800 Wu et al. 2016a Neoboletus sanguineus HKAS68587 Yunnan, SW China PublicationKF112329 — KF112150 Wu et al. 2016a Neoboletus sanguineus HKAS80823 Yunnan, SW China KT990608 — KT990802 Wu et al. 2016a

Neoboletus sanguineus HKAS80849 Yunnan, SW China KT990609 — KT990803 Wu et al. 2016a

Neoboletus sanguineus HKAS90211 Xizang, SW China KT990610 — KT990804 Wu et al. 2016a

Neoboletus sp. HKAS50351 Yunnan, SW China KF112318 — — Wu et al. 2014

Neoboletus sp. HKAS76660 Henan, central China KF112328 — KF112180 Wu et al. 2014

Neoboletus thibetanus HKAS57093 Xizang, SW China KF112326 — — Wu et al. 2014

Neoboletus tomentulosus HKAS53369 Fujian, SE China KF112323 — KF112154 Wu et al. 2014

Neoboletus tomentulosus HKAS77656 Guangdong, southern KT990611 — KT990806 Wu et al. 2016a

China

Neoboletus tomentulosus N.K. Zeng1285 Fujian, SE China MH879691 MH885352 MH879720 Chai et al. 2019

(FHMU841)

Neoboletus tomentulosus N.K. Zeng1286 Fujian, SE China MH879692 MH885353 MH879721 Chai et al. 2019

Advance(FHMU842)

Neoboletus venenatus HKAS57489 Yunnan, SW China KF112325 — KF112158 Wu et al. 2014

Neoboletus venenatus HKAS63535 Sichuan, SW China KT990613 — KT990807 Wu et al. 2016a

Sutorius subrufus N.K. Zeng3043 Hainan, southern China MH879698 MH885360 MH879728 Chai et al. 2019

(FHMU2004)

Sutorius subrufus N.K. Zeng3045 Hainan, southern China MH879699 MH885361 MH879729 Chai et al. 2019

(FHMU2006)

- 21 -