MYCOLEGIUM: Making Sense New Mushroom Genera: of a Ll T He Ne W Horn of Plenty Or Deluge? Mushroom Names Else C

Total Page:16

File Type:pdf, Size:1020Kb

MYCOLEGIUM: Making Sense New Mushroom Genera: of a Ll T He Ne W Horn of Plenty Or Deluge? Mushroom Names Else C Courtesy M. G. Wood. MYCOLEGIUM: Making Sense New mushroom genera: of a ll t he Ne w horn of plenty or deluge? Mushroom Names Else C. Vellinga and Thomas W. Kuyper [email protected] n 2014 and the first Text box #1 – Some definitions six months of 2015 clade – a monophyletic group consisting of a common ancestor and all its descendants. alone, more than 20 genus (plural: genera) – a monophyletic group of species that have (preferably) new bolete genera were morphological characters in common. I monophyletic – a genus is called monophyletic when all its members share a proposed. Contrary to what most recent common ancestor that is not shared by species outside that many people would expect, these genera genus (the red and blue blocks in Fig. 1 represent monophyletic groups). are not restricted to some faraway exotic A single species is monophyletic by definition. locale where the boletes have novel paraphyletic – a genus is called paraphyletic, when only by including members character combinations, no, these new of another genus or other genera, all its members share a common ancestor genus names are for familiar species that (the green block in Fig. 1 represents a paraphyletic genus). occur in North America and Europe and polyphyletic – a genus is called polyphyletic as a more advanced case of that we have been calling by the name paraphyly and the members of the genus are scattered over widely different “Boletus” for a long time. clades (example: Marasmius with M. androsaceus falling inside Gymnopus, This creation of new genera is not and M. minutus outside the family Marasmiaceae). restricted to the boletes. The numbers sister group – the closest relative of a clade or species in a phylogenetic tree for the gilled mushroom species are (the red block in Fig. 1 is a sister group to the blue-green clade). comparable: we counted around 24 new genera published in that same time taxon (plural: taxa) – any taxonomic unit from forma to phylum. period, most of them white-spored, type species of a genus – the species that is the name-bearing type of a genus with six new genera for species we used (example: Coprinus comatus is the type species of the genus Coprinus; when to call Clitocybe, five new genera in the Coprinus was split up, the name Coprinus stayed with C. comatus, and the Lyophyllaceae, and three new ones in the other parts of the genus, got new names). The type species is not Psathyrella family. However, there were necessarily the most typical for the genus. only two new brown-spored genera. And the largest genus by far, Cortinarius, was not affected. Most of these genera are for existing species, only a few, such as Cercopemyces crocodilinus from the Rocky Mountains (Baroni et al., 2014; and see the spring 2015 issue of FUNGI), are for newly discovered species. Here we will try to explain what triggered this flood of new genera. We’ll also have a critical look at what is necessary to make good, solid, acceptable genera. On that basis we can also look Figure 1. An example of a phylogenetic tree with the terminal branches each critically whether these new genera are, representing an individual species. The blue and the red parts of the tree at least for the time being, warranted. represent monophyletic groups. The green part is not monophyletic, but We give references to the original paraphyletic, as the green and the blue together are monophyletic. The red articles in which the research we cover clade is sister to the green/blue clade. (from Wikimedia) here is described; many of those are freely accessible, so you can see for Some historical background with the underlying principle that what yourself how this type of science is done. Up to the mid 1990s mushroom we recognized represented a natural Definitions of some of the terms we use genera were recognized and described system and that system was the result throughout this article are in Text box #1. based on morphological characters, of evolution. These classifications were FUNGI Volume 8:4 Winter 2015 35 of course subjective and prone to a lot characters that could be used to gauge your family tree one could conclude of debate. Different traditions reigned the value of certain characters for that your cousin is your closest on the different continents: Entoloma in genus definitions. What to do with relative, though in reality it is your Europe included Nolanea and Leptonia, those characters that were incongruent brother. So trees that are based whereas in the USA these were three was a big problem. Was it more exclusively on taxa of a certain area different genera, and Hygrophorus in important that all species in a genus had (e.g., the northern hemisphere), North America included the colorful amyloid spores than that they all were while the group itself has a much Hygrocybe species that were in their own ectomycorrhizal or had an annulus? broader geographical distribution, genus in Europe. Those were unanswerable questions, as in the case of some bolete trees, Name changes happened, also in the though, of course; taxonomists would are suspect. past. An example is the turkey tail, now argue about these issues, but nobody 2. Is your tree a gene tree, based on known as Trametes versicolor, which has could claim victory. one piece of DNA only, or is it resided in 12 different genera since its Molecular phylogenetics changes based on a critical examination of a initial naming in 1753 (Linnaeus, 1753). fungal systematics number of different genes? And if it Alexander Smith was upset by the is based on one piece of DNA only, With the advance of molecular flood of new genera created by Singer is that a piece that is known to be methods to make many copies of pieces who worked in the neotropics where the very variable and very helpful at the of DNA that could then be analyzed mushrooms did not fit the descriptions species level but not so much for and sequenced, and the development of of the temperate genera. Smith (1968) genus recognition? The nrITS region larger and faster computers that could thought that “When we have made a (a spacer region that sits in between deal with larger and more complicated critical study from an adequate sample genes that do not show much data sets, mushroom systematics of a population, such as that of North variation among species) is very changed dramatically. America for the gill fungi, I believe that good at discriminating mushroom These methods made it possible to the generic concepts will be found to be species (not all, but many; it is compare genetic markers (for instance rather self-evident.” therefore used as the so-called bar pieces of spacer regions in between Mushroom fruitbodies do not have code region. But while it is very genes, and genes that code for the a wealth of morphological characters, good at species, that means there is household chores in the cells, but not so they did not lend themselves very a lot of variation among species, and those that make the pigments) and we well to phylogenetic studies based on it is much harder to use for species could formulate hypotheses for the morphology as developed by Hennig groups that are not so closely evolution of these pieces of DNA. These (1950; 1965). There were simply no related. The nrITS region is not hypotheses are in general presented recommended as the sole marker as a phylogenetic tree, in which each for genus recognition. Unfortunately terminal branch is a sample or a (or should we say of course) some collection. The more different pieces of mycologists still do base genera on DNA that are used to make these trees, trees derived from ITS data alone. the more species and specimens are A further advantage of making trees included, and the higher the statistical based on a number of (say 5–8) support for the branches on the tree is, genes, is that it allows evaluation of the better this hypothesis will represent alternative classifications in case the the true path of evolution. The tree various genes provide contradictory might become a species tree instead of information. If statistical support for a gene tree. These trees are similar to the final tree is low, an attempt can the family trees one can build for their be made to analyze the causes for ancestors, though here the terminal that lack of congruence. branches represent an individual person. These phylogenetic trees are used to The first revolutionary results determine what good species are, and Coprinus, the inky cap genus, was one also for the circumscription of genera. of the first genera to be analyzed with Figure 2. A phylogenetic tree with 5 As indicated above, one needs to look these new methods, and to everybody’s terminal monophyletic taxa. This tree carefully at the tree, and be aware of a surprise this genus turned out to be represents many different monophyletic few things: polyphyletic, with Coprinus comatus genera: a; a and b together; a, b and c 1. Which taxa are included in the tree? and its close allies closely related to together; a, b, c, and d together, and all One can only draw conclusions Lepiota, and the rest of the genus not five together. A paraphyletic genus is about the taxa that are included in monophyletic, but clearly separating formed by the d-e combination, or by the study, not about those that are into three groups (Hopple and Vilgalys, c, d and e; the combination of a and e not there – it is like making a family 1999).
Recommended publications
  • <I>Phylloporus
    VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 341–359 doi.org/10.3114/fuse.2018.02.10 Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides A. Farid1*§, M. Gelardi2*, C. Angelini3,4, A.R. Franck5, F. Costanzo2, L. Kaminsky6, E. Ercole7, T.J. Baroni8, A.L. White1, J.R. Garey1, M.E. Smith6, A. Vizzini7§ 1Herbarium, Department of Cell Biology, Micriobiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA 2Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 3Via Cappuccini 78/8, I-33170 Pordenone, Italy 4National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 5Wertheim Conservatory, Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA 6Department of Plant pathology, University of Florida, Gainesville, Florida 32611, USA 7Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 8Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 1304, USA *Authors contributed equally to this manuscript §Corresponding authors: [email protected], [email protected] Key words: Abstract: The monotypic genus Phylloporopsis is described as new to science based on Phylloporus boletinoides. This Boletales species occurs widely in eastern North America and Central America. It is reported for the first time from a neotropical lamellate boletes montane pine woodland in the Dominican Republic. The confirmation of this newly recognised monophyletic genus is molecular phylogeny supported and molecularly confirmed by phylogenetic inference based on multiple loci (ITS, 28S, TEF1-α, and RPB1).
    [Show full text]
  • <I>Hydropus Mediterraneus</I>
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.393 Volume 121, pp. 393–403 July–September 2012 Laccariopsis, a new genus for Hydropus mediterraneus (Basidiomycota, Agaricales) Alfredo Vizzini*, Enrico Ercole & Samuele Voyron Dipartimento di Scienze della Vita e Biologia dei Sistemi - Università degli Studi di Torino, Viale Mattioli 25, I-10125, Torino, Italy *Correspondence to: [email protected] Abstract — Laccariopsis (Agaricales) is a new monotypic genus established for Hydropus mediterraneus, an arenicolous species earlier often placed in Flammulina, Oudemansiella, or Xerula. Laccariopsis is morphologically close to these genera but distinguished by a unique combination of features: a Laccaria-like habit (distant, thick, subdecurrent lamellae), viscid pileus and upper stipe, glabrous stipe with a long pseudorhiza connecting with Ammophila and Juniperus roots and incorporating plant debris and sand particles, pileipellis consisting of a loose ixohymeniderm with slender pileocystidia, large and thin- to thick-walled spores and basidia, thin- to slightly thick-walled hymenial cystidia and caulocystidia, and monomitic stipe tissue. Phylogenetic analyses based on a combined ITS-LSU sequence dataset place Laccariopsis close to Gloiocephala and Rhizomarasmius. Key words — Agaricomycetes, Physalacriaceae, /gloiocephala clade, phylogeny, taxonomy Introduction Hydropus mediterraneus was originally described by Pacioni & Lalli (1985) based on collections from Mediterranean dune ecosystems in Central Italy, Sardinia, and Tunisia. Previous collections were misidentified as Laccaria maritima (Theodor.) Singer ex Huhtinen (Dal Savio 1984) due to their laccarioid habit. The generic attribution to Hydropus Kühner ex Singer by Pacioni & Lalli (1985) was due mainly to the presence of reddish watery droplets on young lamellae and sarcodimitic tissue in the stipe (Corner 1966, Singer 1982).
    [Show full text]
  • Checklist of Argentine Agaricales 4
    Checklist of the Argentine Agaricales 4. Tricholomataceae and Polyporaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina CORRESPONDENCE TO *: [email protected] ABSTRACT— A species checklist of 86 genera and 709 species belonging to the families Tricholomataceae and Polyporaceae occurring in Argentina, and including all the species previously published up to year 2011 is presented. KEY WORDS—Agaricomycetes, Marasmius, Mycena, Collybia, Clitocybe Introduction The aim of the Checklist of the Argentinean Agaricales is to establish a baseline of knowledge on the diversity of mushrooms species described in the literature from Argentina up to 2011. The families Amanitaceae, Pluteaceae, Hygrophoraceae, Coprinaceae, Strophariaceae, Bolbitaceae and Crepidotaceae were previoulsy compiled (Niveiro & Albertó 2012a-c). In this contribution, the families Tricholomataceae and Polyporaceae are presented. Materials & Methods Nomenclature and classification systems This checklist compiled data from the available literature on Tricholomataceae and Polyporaceae recorded for Argentina up to the year 2011. Nomenclature and classification systems followed Singer (1986) for families. The genera Pleurotus, Panus, Lentinus, and Schyzophyllum are included in the family Polyporaceae. The Tribe Polyporae (including the genera Polyporus, Pseudofavolus, and Mycobonia) is excluded. There were important rearrangements in the families Tricholomataceae and Polyporaceae according to Singer (1986) over time to present. Tricholomataceae was distributed in six families: Tricholomataceae, Marasmiaceae, Physalacriaceae, Lyophyllaceae, Mycenaceae, and Hydnaginaceae. Some genera belonging to this family were transferred to other orders, i.e. Rickenella (Rickenellaceae, Hymenochaetales), and Lentinellus (Auriscalpiaceae, Russulales).
    [Show full text]
  • Caloboletus Calopus
    © Demetrio Merino Alcántara [email protected] Condiciones de uso Caloboletus calopus (Pers.) Vizzini, Index Fungorum 146: 1 (2014) Boletaceae, Boletales, Agaricomycetidae, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi ≡ Boletus calopus Pers., Syn. meth. fung. (Göttingen) 2: 513 (1801) ≡ Boletus calopus Pers., Syn. meth. fung. (Göttingen) 2: 513 (1801) f. calopus ≡ Boletus calopus f. ereticulatus Estadès & Lannoy, Docums Mycol. 31(no. 121): 61 (2001) ≡ Boletus calopus Pers., Syn. meth. fung. (Göttingen) 2: 513 (1801) var. calopus ≡ Boletus calopus var. ruforubraporus Bertéa & Estadès, Docums Mycol. 31(no. 121): 61 (2001) = Boletus lapidum J.F. Gmel., Systema Naturae, Edn 13 2(2): 1434 (1792) = Boletus olivaceus Schaeff., Fung. bavar. palat. nasc. (Ratisbonae) 4: 77 (1774) = Boletus pachypus var. olivaceus (Schaeff.) Pers., Mycol. eur. (Erlanga) 2: 130 (1825) ≡ Boletus subtomentosus subsp. calopus (Pers.) Pers., Mycol. eur. (Erlanga) 2: 139 (1825) ≡ Caloboletus calopus f. ereticulatus (Estadès & Lannoy) Blanco-Dios, Index Fungorum 215: 1 (2015) ≡ Caloboletus calopus var. ruforubraporus (Bertéa & Estadès) Blanco-Dios, Index Fungorum 215: 1 (2015) ≡ Dictyopus calopus (Pers.) Quél., Enchir. fung. (Paris): 160 (1886) = Dictyopus olivaceus (Schaeff.) Quél., Enchir. fung. (Paris): 160 (1886) ≡ Tubiporus calopus (Pers.) Maire, Publ. Inst. Bot. Barcelona 3(no. 4): 46 (1937) Material estudiado: Francia, Aquitania, Urdós, Sansanet, 30TXN9940, 1.390 m, borde de camino bajo Fagus sylvatica y Abies sp., 2-VII-2015, leg. Dianora Estrada y Demetrio Merino, JA-CUSSTA: 8440. Descripción macroscópica: Sombrero de 4,5-7,5 cm, de hemisférico a convexo, con margen excedente. Cutícula glabra, mate, seca y de color ocre claro. Tubos adnados, cortos, finos, de color amarillo que vira ligeramente a azul con tonos oliváceos.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • 30518002 Miolo.Indd
    Hoehnea 36(2): 339-348, 1 tab., 3 fi g., 2009 339 Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil Marina Capelari1,2 and Tatiane Asai1 Received: 29.01.2009; accepted: 28.05.2009 ABSTRACT - (Cystoderma, Cystodermella and Ripartitella in Atlantic Forest, São Paulo State, Brazil). This paper reports on the genera Cystoderma, Cystodermella and Ripartitella from Atlantic Rainforest, Southeast Brazil. They are represented by Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana and Ripartitella brasiliensis. Cystoderma chocoanum is reported for the fi rst time outside the type locality (Colombia) and its relationship with others species of Cystoderma, based on nLSU rDNA sequences, is discussed. Key words: Basidiomycota, diversity, molecular analysis, taxonomy RESUMO - (Cystoderma, Cystodermella e Ripartitella em Mata Atlântica, São Paulo, Brasil). Este trabalho reporta a ocorrência dos gêneros Cystoderma, Cystodermella e Ripartitella para Mata Atlântica, São Paulo, Brasil. Foram registrados Cystoderma chocoanum, Cystodermella contusifolia, C. sipariana e Ripartitella brasiliensis. Cystoderma chocoanum é registrada pela primeira vez fora da localidade tipo (Colômbia) e sua relação com outras espécies de Cystoderma, baseadas em seqüências de nLSU DNAr, é discutida. Palavras-chave: análise molecular, Basidiomycota, diversidade, taxonomia Introduction stipitate. Singer (1949) considered only one species in the genus, reducing R. squamosidisca to synonym The species from genus Cystoderma Fayod was of R. brasiliensis (Speg.) Singer. The late species separated in two distinct genera, Cystoderma s. str. was based on Pleurotus brasiliensis Speg. collected and Cystodermella by Harmaja (2002), considering in Apiaí, São Paulo State, by Puiggari (Spegazzini the amyloidity of basidiospores; previously unused 1889). Later, R. sipariana (Dennis) Dennis (Dennis differences or tendencies present in the genus, 1970), R.
    [Show full text]
  • MYCOTAXON Volume 96, Pp
    MYCOTAXON Volume 96, pp. 181–191 April–June 2006 The genus Chlorophyllum (Basidiomycetes) in China Z. W. GE1, 2 & Zhu L. YANG1, * [email protected] [email protected] 1 Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany Chinese Academy of Sciences, Heilongtan, Kunming 650204, Yunnan, P. R. China 2 Graduate School of the Chinese Academy of Sciences Beijing 100039, P. R. China Abstract—Species of the genus Chlorophyllum (Agaricaceae) in China are described and illustrated with line drawings. Among them, C. sphaerosporum is new to science, and C. hortense is new to China. A key to the Chlorophyllum species in China is also provided. Key words—Agaricales, new taxon, new record, taxonomy, distribution Introduction The genus Chlorophyllum Massee (Agaricaceae, Agaricales, Basidiomycetes) in its amended sense is characterized by a hymenidermal pileus covering, a smooth stipe, and basidiospores without a germ pore or with a germ pore but just caused by a depression in the episporium. A hyaline covering on the germ pore is absent. The basidiospores may be white, green, brownish or brown in deposit, and the habit varies from agaricoid to secotioid (Vellinga 2001, 2002, 2003a, b; Vellinga & de Kok 2002; Vellinga et al. 2003). During our survey of the lepiotoid fungi in China, several species were identified, and one new species of the genus was encountered and thus described below. Differences between similar species are provided and discussed. Material and methods All material examined collected in China, and deposited in three Herbaria. Herbarium codes used follow Holmgren et al. (1990) with one exception: HKAS = Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences, which is not listed in the index or relevant publications.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Caloboletus Radicans (Pers.) Vizzini (Boletaceae) В Республике Мордовия
    Общая биология УДК 582.284 (470.345) CALOBOLETUS RADICANS (PERS.) VIZZINI (BOLETACEAE) В РЕСПУБЛИКЕ МОРДОВИЯ © 2018 А.В. Ивойлов Национальный исследовательский Мордовский государственный университет им. Н. П. Огарёва Статья поступила в редакцию 29.10.2018 В статье приводится информация о первой находке в Республике Мордовия болета укореняюще- гося, или беловатого (Caloboletus radicans (Pers.) Vizzini, 2014), в литературе чаще называемого как Boletus radicans (Pers.) Fr. Изложена история описания этого вида, этимология названия, особен- ности экологии, общее распространение на земном шаре и в России. Показано, что данный вид находится в Мордовии на северной границе своего ареала, образует микоризу с дубом (Quercus robur L.), относится к типичным термофильным видам, как правило появляется в годы с сухим и жарким летом или после таковых, достаточно засухоустойчив, так как плодовые тела могут по- являться даже при незначительном количестве осадков. Приведено описание макро- и микро- структур вида, выполненное на основе материала автора. В статье указано местонахождение ма- кромицета, приведены его координаты и даты находок. Размеры найденных плодовых тел были типичными для вида. В связи с тем, что C. radicans относится к редким видам, он включен во второе издание Красной книги Республики Мордовия с категорией 3 (редкий вид), рекомендуется поиск новых его местонахождений, контроль (мониторинг) состояния популяции, просветительская ра- бота по его охране. Гербарные экземпляры плодовых тел и фотографии базидиом хранятся в гербарии Ботанического института им. В. Л. Комарова (LE 314970, 314981). Ключевые слова: микобиота России, Республика Мордовия, гриб-базидиомицет, Caloboletus radicans (Pers.) Vizzini – болет укореняющийся, редкий вид, Красная книга Республики Мордовия. ВВЕДЕНИЕ другие, найден здесь вблизи северной границы своего ареала [2]. Находка явилась первым до- Сведения о видовом составе и распростра- стоверным подтверждением данного вида для нении грибов в разных регионах России не- республики.
    [Show full text]
  • ! a Revised Generic Classification for The
    A REVISED GENERIC CLASSIFICATION FOR THE RHODOCYBE-CLITOPILUS CLADE (ENTOLOMATACEAE, AGARICALES) INCLUDING THE DESCRIPTION OF A NEW GENUS, CLITOCELLA GEN. NOV. by Kerri L. Kluting A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Middle Tennessee State University 2013 Thesis Committee: Dr. Sarah E. Bergemann, Chair Dr. Timothy J. Baroni Dr. Andrew V.Z. Brower Dr. Christopher R. Herlihy ! ACKNOWLEDGEMENTS I would like to first express my appreciation and gratitude to my major advisor, Dr. Sarah Bergemann, for inspiring me to push my limits and to think critically. This thesis would not have been possible without her guidance and generosity. Additionally, this thesis would have been impossible without the contributions of Dr. Tim Baroni. I would like to thank Dr. Baroni for providing critical feedback as an external thesis committee member and access to most of the collections used in this study, many of which are his personal collections. I want to thank all of my thesis committee members for thoughtfully reviewing my written proposal and thesis: Dr. Sarah Bergemann, thesis Chair, Dr. Tim Baroni, Dr. Andy Brower, and Dr. Chris Herlihy. I am also grateful to Dr. Katriina Bendiksen, Head Engineer, and Dr. Karl-Henrik Larsson, Curator, from the Botanical Garden and Museum at the University of Oslo (OSLO) and to Dr. Bryn Dentinger, Head of Mycology, and Dr. Elizabeth Woodgyer, Head of Collections Management Unit, at the Royal Botanical Gardens (KEW) for preparing herbarium loans of collections used in this study. I want to thank Dr. David Largent, Mr.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]