The Physiology of Growth by S

Total Page:16

File Type:pdf, Size:1020Kb

The Physiology of Growth by S Postgrad Med J: first published as 10.1136/pgmj.26.298.417 on 1 August 1950. Downloaded from 417 THE PHYSIOLOGY OF GROWTH BY S. LEONARD SIMPSON, M.A., M.D., F.R.C.P. Consultant Endocrinologist, St. Mary's Hospital, etc.; Formerly Research Wor7Aer, Lister Institute Although clinical and experimental evidence postulated an antagonism between growth and had previously indicated that skeletal growth sex-stimulating hormones. Further observations depended upon the pituitary gland, it was not suggested that corpora lutea were formed before until I92I that Evans and Long, at the University ovulation occurred, and that his emulsions con- of California, demonstrated that a saline emulsion tained gonadotrophic luteinizing hormone. Al- made from the anterior pituitary lobe of fresh though Evans' original giant rats were apparently glands of cattle contained a growth hormone. The adipose, later work (Lee and Schaffer, 1934), hypophyses were thrown into 40 per cent. ethyl showed that there was a retention of nitrogen and alcohol, agitated with a glass rod, transferred to a relative excess of body protein. This was also two changes of sterile normal saline, and triturated true of the excess of tissue deposited in and with force and speed with ocean sand, diluted with around the abdomen. Evans stated in a recent saline, and decanted. The layers of sand, cell discussion in London that rats treated with pure fragments and opaque pink fluid permitted the growth hormone, unlike those in the initial latter to be decanted. This emulsion, when experiments with crude extracts, were not injected daily in doses of I to i ml. intraperiton- adipose. eally into young rats, accelerated their skeletal Another fundamental step was the development growth rate, compared with controls, and con- by P. E. Smith (I926) of a technique of completecopyright. tinued this growth for 20o days, or more, after hypophysectomy on the rat, without interfering growth normally ceases. Later, improved chemical with the hypothalamus. There resulted ' an methods permitted the preparations of alkaline almost complete growth stasis and a rapid regres- extracts which contained the growth hormone sion in the size of the adrenals (involving chiefly in purer form. It is interesting and important to the cortex), the thyroid and the sex apparatus ' note that Evans (1923-4) recorded that success, (Fig. i). At the Institute of Biology at Berkeley in mammals, with parenteral injections of beef University, California, rats are completely hypo- hypophysis extracts was only obtained ' after physectomized without complications in about failure in a long series of massive oral administra- two minutes for each operation, and there is http://pmj.bmj.com/ tions '. There is no doubt that in mammals the always a plentiful supply of hypophysectomized groWth hormone is ineffective when given by rats for experimental work. Such rats may be mouth, although this well-established experi- used for the assay of growth hormone, either by mental fact is still ignored by some clinicians. The weight increase, or by tail growth (Freud et al., rat is a particularly suitable animal for testing 1935, I939). Smith and MacDowell (I930) growth hormone because its epiphyses remain studied a strain of black silver dwarf mice, brought open until late in life. from England by Professor L. C. Dunn in I928, The effect of extracts containing pituitary in whom the characteristic of dwarfism was shown on October 1, 2021 by guest. Protected growth hormone has also been dramatically by Snell to be recessive. These mice cease to demonstrated in hypophysectomized rats and in grow after the end of the second week, but, congenitally dwarfed mice. Evans (1923) termed although there is some delay in sexual develop- his normal rats injected with pituitary emulsions ment, reproduction takes place. The essential ' hypophysis giants', and stated that they were physiological defect is absence of the growth 'twice as heavy as the largest individuals known hormone, and the essential histological defect in to us from our own and published records for this the pituitary gland of these animals is a complete animal species'. They were fat animals ; 'the absence of the eosinophil cells. Implantation of skeleton, most of the viscera especially the heart the pituitary glands of these dwarf mice into and lungs, liver, kidneys, and alimentary tract immature female mice of a normal strain produces showed a true overgrowth, but not so the repro- no acceleration of growth but accelerates sexual ductive tract, the uterus and oviduct remaining development. The injection of growth hormone infantile'. He also observed that the growth and will produce growth in these dwarf mice. Furtier maturation of ova were-impaired' or prevented, a'nd experimenta' evidence to the effect that ''the Postgrad Med J: first published as 10.1136/pgmj.26.298.417 on 1 August 1950. Downloaded from 4I8. POSTGRADUATE MEDICAL JOURNAL August I 950 eosinophil cells are the source of the growth Is there a Specific Growth Hormone ? hormone was provided by Smith who showed that Pituitary extracts containing growth hormones the peripheral part of the bovine gland contains were found by earlier observers to contain also eosinophil cells, and, when stripped from the adrenotrophic and thyrotrophic hormones as well central basophil portion, will yield growth hor- as prolactin. Apart from any direct effect on mone. Clinically, gigantism is often associated skeletal growth attributable to hormones of the with an eosinophil adenoma. adrenal cortex and thyroid and possibly to pro- It is also of interest to note that the thyroid and lactin, it is probable that these hormones have adrenal cortex of Dunn's dwarf mice were hypo- effects on metabolism which indirectly favour plastic, suggesting that the eosinophil cells are the growth, especially in hypophysectomized animals source of the thyrotrophic and adreno-cortico- in which these glands are hypoplastic or atrophic. trophic hormones. Riddle and Bates (I938) suggested therefore that certain pituitary extracts owe their action upon Measurement and Site of Action of Growth growth to a balanced combination of prolactin, Hormone thyrotrophic and adrenotrophic hormones rather Since the epiphyses of normal rats remain open than to a special growth hormone. Earlier experi- in adult life, earlier methods of assay of growth ments, however, indicated that the growth hor- hormone depended upon observations on the mone was a specific entity. Thus Evans (I924) re- body weight of normal rats after ' a plateau' in cords that Smith and Allen showed that beef their weight curve was established, indicating hypophysis is effective by mouth in producing cessation of growth. After the technique of growth in hypophysectomized tadpoles, but that it hypophysectomy was mastered, the effect on the does not produce metamorphosis or repair the weight of the hypophysectomized rat appeared to atrophied adrenal cortex (interrenal body) or the have a greater exactitude and specificity. Freud, thyroid. Smith, in 1930, demonstrated that whereas Levie and Kroon (I939) used the tail of the intramuscular transplantation of living pituitary hypophysectomized rat as a more exact measure- glands from adult rats into dwarfed hypophysec- ment of the effect of the growth hormone (Fig. 2). tomized rats restored the size and function of the copyright. They also made radiographic and histological thyroid, adrenals and gonads as well as producing studies of fundamental importance. Using an growth, injections of a saline suspension of fresh almost purified growth hormone, they demon- gland affected growth only. It would therefore strated its specific chondrotrophic effect. In the appear that although extracts of growth hormone normal growing rat, the epiphyseal zone shows as usually prepared contain adrenotrophic and cells arranged in columns, little cartilaginous thyrotrophic hormones which have some effect on matrix, vascular connective tissue and a fine growth, there is a specific growth hormone which network of cancellous bone. In the hypophysec- can be chemically separated. This is in keeping tomized rat (Fig. i), the regular columns of with the existence of clinical conditions in which http://pmj.bmj.com/ cartilage cells characteristic of growing cartilage the only defect appears to be that of growth are undeveloped and irregularly placed, the hormone, although other clinical conditions con- longitudinal arrangement is lost, mitosis is firm that the thyroid, the adrenals and the gonads minimal, the matrix has increased and the fine themselves have an important influence on growth. primary cancellous bone has disappeared. Growth We shall see later that further purification of the hormone immediately repairs this histological growth hormone led to more conclusive proof of picture, which reverts to normal, and shows active its specificity. growth of cartilage. There is no alteration in the on October 1, 2021 by guest. Protected development of bone tissue itself, and the growth The Thyroid and Growth hormone is seen to have a biologically typical point In the strain of congenitally dwarfed mice of attack at the proliferating cartilage. Freud, referred to above, thyroid extract alone produced Levie and Kroon (I934) found that the epiphyses an increase of growth, although not as much as of the tail of the rate soon become closed after pituitary growth hormone (Bates et al., 1935). hypophysectomy. Thus after four weeks a trans- The rate of growth of young normal mice is verse bony plate closes the epiphysis, from which a consistently accelerated by thyroxine injected number of massive bony processes project towards daily, but the period of this acceleration lasts for the diaphyseal marrow cavity. This can be en- only five weeks after which time the control mice tirely prevented by the early use of growth hor- overtake the'treated animals and the ultimate size mone after hypophysectomy, but it cannot be is the same. The skeleton of rats thyroidectomized reversed after it has *occurred. Smith (I930), at birth does not develop beyond the skeletal age of however, found replacement therapy renewed iS days, even with pituitary growth extract, unless growth three months after hypophysectomy.
Recommended publications
  • Human General Histology
    135 اووم څپرکي انډوکراين سيستم (Endocrine system) (hormones) (target cells) (receptors) autonomic (sinusoids) ductless glands thyroid gland Pineal gland Hypophysis cerebri(pituitary glands) supra renal( adrenal glands) parathyroid glands 136 اووم څپرکي انډوکراين سيسټم islets cell corpora lutea interstitial tissue (placenta) GIT amines neurotransmitters amines neuromodulator 137 اووم څپرکي انډوکراين سيسټم APUD cells neuroendocrine system system adrenaline, (amino acid derivatives) thyroxin noradrenalin thyroid vasopressin encephalin (small peptides) releasing hormone(TRH) TSH(thyroid stimulating parathormone hormone) cortisol Testosterone estrogen (steroids) 5,12,3 (Hypophysis Cerebri) (brain) pituitary gland (stalk) Ventricle infundibulum stalk pituitary fossa sphenoid pineal hypothalamus body 138 اووم څپرکي انډوکراين سيسټم Hypophysis cerebri Pars pars anterior pars nervosa pars posterior intermediate hypothalamus infundibulum infundibulum stalk )Pars posterior neurohypophysis median eminence (tuber cinereum) infundibulum pars neurohypophysis median eminence pars intermediate pars distalis anterior Adenohypophysis infundibulum pars anterior pars tuberalis adenohypophysis 139 اووم څپرکي انډوکراين سيسټم Adenohypophysis pars intermediate pars anterior adenohypophyisis Pars anterior fenestrated sinusoids (cords) chromophil chromophobic acidophil chromophil basophils orange G eosin PAS-positive hematoxylline Beta cells basophil Alpha cells Acidophil basophils acidophil (dese cored vesicles) alpha Beta Histochemical 140 اووم څپرکي انډوکراين
    [Show full text]
  • Quantitation of Corticotrophs in the Pars Distalis of Stress-Prone Swine Beverly Ann Bedford Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1976 Quantitation of corticotrophs in the pars distalis of stress-prone swine Beverly Ann Bedford Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Veterinary Anatomy Commons Recommended Citation Bedford, Beverly Ann, "Quantitation of corticotrophs in the pars distalis of stress-prone swine" (1976). Retrospective Theses and Dissertations. 17953. https://lib.dr.iastate.edu/rtd/17953 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Quantitation of corticotrophs in the pars distalis of stress-prone swine by Beverly Ann Bedford A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degr~e of MASTER OF SCIENCE Department: Veterinary Anatomy, Pharmacology and Physiology Major: Veterinary Anatomy ., Signatures have been redacted for privacy ' I Iowa State University Ames, Iowa 1976 ii :E5 ll I q7(p ,g3r TABLE OF CONTENTS c,J. Page INTRODUCTION 1 LITERATURE REVIEW 4 Pituitary Gland 4 General morphology 4 Development 5 Blood supply 7 Staining techniques 7 Pars distalis 13 . Pars tuberalis 25 ·pars intermedia 28 Process of secretion 36 Neurohypophysis 41 Porcine Stress Syndrome 45 MATERIALS AND MET!iODS' 52 RESULTS 56 DISCUSSION 64 SUMMARY AND CONCLUSIONS 72 BIBLIOGRAPHY 73 ACKNOWLEDGMENTS 85 APPENDIX 86 1111408 1 INTRODUCTION As early as 1953, there came reports (Ludvigsen, 1953; Briskey et al., 1959) of pale soft exudative (PSE) post-mortem porcine muscu- lature which later stimulated research into the mechanisms responsible for this condition.
    [Show full text]
  • Unit-4 Structure and Functions of Pituitary Gland
    UNIT-4 STRUCTURE AND FUNCTIONS OF PITUITARY GLAND Pituitary gland or hypophysis is a small endocrine gland with a diameter of 1 cm and weight of 0.5 to 1 g. It is situated in a depression called ‘sella turcica’, present in the sphenoid bone at the base of skull and connected with the hypothalamus by the pituitary stalk or hypophyseal stalk. Pituitary gland is divided into two divisions: 1. Anterior pituitary or adenohypophysis 2. Posterior pituitary or neurohypophysis. Both are entirely different in their development, structure and function. Between the two divisions, there is a small and relatively avascular structure called pars intermedia. DEVELOPMENT OF PITUTARY GLAND Anterior pituitary is ectodermal in origin and arises from the pharyngeal epithelium as an upward growth known as Rathke pouch. Posterior pituitary is neuroectodermal in origin and arises from hypothalamus as a downward diverticulum. Rathke pouch and the downward diverticulum from hypothalamus grow towards each other and meet in the midway between the roof of the buccal cavity and base of brain. There, the two structures lie close together. ANTERIOR PITUITARY OR ADENOHYPOPHYSIS Anterior pituitary is also known as the master gland because it regulates many other endocrine glands through its hormones. Anterior pituitary consists of three parts 1. Pars distalis 2. Pars tuberalis 3. Pars intermedia. Anterior pituitary has two types of cells 1. Chromophobe cells 2. Chromophil cells. Chromophobe Cells Chromophobe cells are not secretory in nature, but are the precursors of chromophil cells. Chromophil Cells On the basis of secretory nature chromophil cells are classified into five types: i.
    [Show full text]
  • Endocrine System Hormonal Regulation Endocrine Glands
    Endocrine system Hormonal regulation Endocrine glands • Glands w/o ducts • Secretory cells release their products, hormones, into the extracellular space and blood stream • Alternatively, the hormones may affect neighbor cells (paracrine) • Structure: • c.t. – capsule + septs • irregular clumps or cords of the cells • network of capillaries • fenestrated capillaries • sinusoids Hypophysis – pituitary gland Pituitary gland – anterior pituitary Pituitary gland – anterior pituitary Chromophil cells - Acidophilic cells (produce proteins) somatotrophs mammotrophs (or lactotrophs) - Basophilic cells (produce glycoproteins) thyrotrophs produce thyroid stimulating hormone (TSH or thyrotropin). gonadotrophs produce follicle stimulating hormone (FSH) and luteinizing hormone (LH) corticotrophs (or adrenocorticolipotrophs) Chromophobe cells Adenohypophysis Adenohypophysis oranž G + PAS Neurohypophysis x Adenohypophysis Neurohypophysis - structure Structure unmyelinated nerve fibres derived from neurosecretory cells of the supraoptic and paraventricular hypothalamic nuclei pituicytes /neuroglia/ Function Two hormones are oxytocin, which stimulates the contraction of smooth muscle cell in the uterus and participates in the milk ejection reflex, and antidiuretic hormone (ADH or vasopressin), which facilitates the concentration of urine in the kidneys and, thereby, the retention of water. Usually only the oval or round nuclei of the pituicytes are visible. Hypothalamic nerve fibres typically terminate close to capillaries. Scattered, large
    [Show full text]
  • Suprarenocortical Syndrome and Pituitary Basophilism
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1935 Suprarenocortical syndrome and pituitary basophilism Leonard H. Barber University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Barber, Leonard H., "Suprarenocortical syndrome and pituitary basophilism" (1935). MD Theses. 630. https://digitalcommons.unmc.edu/mdtheses/630 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. SUPRARENOCORTIOAL SYNDROME AND P·ITUITARY BASOPHILISM - L!X>NARD HOBBS BARBER SENIOR THESIS UNIVERSITY OF NEBRASKA· COLLEGE OF MEDICINE. 1935 A.Introduction 1 B.Anatomy of the Hypophysis and Adrenal 6 C.Normal Physiology of the Pituitary 8 D. The Pituitary Adenomas 16 E.Basophilic Syndrome of the Pituitary 21 F.Case Histories 23 1. Discussion of Cases 38 G.Summary and Conclusions 52 H. Bibliography 54 TABLE OF CONTENTS 480672 -1- INTRODUCTION From va.rious sources in recent years new facts have been unearthed both in clinic and laboratory which have thrown light on many heretofore obscure activities of the pituitary gland and adrenal gland. The existance of what we now sneak of as an internal secretion was -perha:os first experimentally demonstrated by Berthold's studies in 1849 on transplantation of the cock's testis.
    [Show full text]
  • Pituitary Gland Structure and Function
    PITUITARY GLAND STRUCTURE AND FUNCTION PROF. PREETY SINHA DEPTT. OF ZOOLOGY A. N. COLLEGE PATNA ALSO CALLED THE HYPOPHYSIS Measures about 1 centimetre in diameter and 0.5 to 1 gram in weight Lies in the Sella turcica, connected to the hypothalamus by the pituitary / hypophysial stalk. • Physiologically, divided into two distinct portions: 1. Anterior pituitary (Adenohypophysis) 2. Posterior pituitary (Neurohypophysis) • Between these is a small, relatively avascular zone called the pars intermedia • Almost absent in the human being but is much larger and much more functional in some lower animal Pituitary regulates many other endocrine glands through its hormones. Anterior pituitary consists of three parts: 1. Pars distalis 2. Pars tuberalis 3. Pars intermedia PARS DISTALIS IT HAS TWO TYPES OF CELLS, WHICH HAVE DIFFERENT STAINING PROPERTIES: 1. CHROMOPHOBE CELLS 2. CHROMOPHIL CELLS 1. Chromophobe cells 2. Chromophil cells Do not possess granules and stain Contain large number of granules and poorly. are darkly stained Form 50% of total cells in anterior Form rest of 50% of anterior pituitary. Are not secretory in nature, but are Types: 1. Basis of staining property the precursors of chromophil 2. Basis of secretory nature cells Pars distalis Chromophobes Chromophills 50% 50% Acidophils Basophils 35% 15% Somatotrophs Lactotrophs Gonadotrophs Thyrotrophs Corticotrophs GH Prolactin ICSH, LH TSH ACTH, MSH PARS TUBERALIS 1.Surrounds the infundibular stalk. 2.Consists of of chords of compressed and granular cells which add mostly cuboidal . 3.This part of pituitary is highly vascular . 4. It develops as a pair of lateral lobe like extension of the embryonic Pars distalis.
    [Show full text]
  • REVIEW Diagnosis of Pheochromocytoma
    Clin. Lab. 2002;48:5-18 ÓCopyright REVIEW Diagnosis of Pheochromocytoma TOMAS LENZ, JAN GOSSMANN, KARL-LUDWIG SCHULTE*, LOTHAR SALEWSKI** AND HELMUT GEIGER Medical Clinic IV, Division of Nephrology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany *Medical Clinic, Königin Elisabeth Herzberge Hospital, Berlin, Germany **Immnno Biological Laboratories, Hamburg, Germany SUMMARY The purpose of this article is to give an overview on recent advances in the diagnosis, localization by imaging and treatment of pheochromocytoma. Pheochromocytoma is a mostly benign tumor (malignancy rate 10 - 15%) which arises from chromaffin cells with excessive catecholamine production and secretion. Most tumors are localized in the adrenals but 15 - 18% of the lesions are found extraadrenally (paragangliomas). Pheochromocytoma is a rare form of secondary hypertension; it can also be found as a feature of familial disease (e.g. von Hippel-Lindau disease, MEN type II) due to genetic mutations of several genes that have been identified recently. In familial pheochromocytoma molecular genetic analysis has improved the diagnostic modalities. In such patients the tumor can occur bilaterally and patients often remain normotensive until the tumor produces sufficient catecholamines to have hemodynamic effects. The extreme importance of recognizing this tumor is evident from the fact that it can be successfully removed in about 90% of the cases, whereas if unrecognized the tumor poses great risk of death or devastating complications. Diagnostic screening includes measurement of catecholamines and their metabolites (metanephrines) in plasma and/or urine. Furthermore, pharmacological testing (e.g. clonidine suppression test) may be indicated in patients with moderately elevated catecholamines or when the diagnosis is still uncertain.
    [Show full text]
  • GLOSSARY of HISTOLOGICAL & MICRO-ANATOMICAL TERMS
    GLOSSARY of HISTOLOGICAL & MICRO-ANATOMICAL TERMS Abbreviations: ( ) plural form in brackets • A. Arabic abb. abbreviation • c. circa (= about) • F. French adj. adjective • G. Greek • Ge. German cf. compare • L. Latin dim. diminutive • NA. Nomina anatomica q.v. which see • OF. Old French A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • The Hypothalamo-Hypophyseal System and the Pituitary Gland
    The hypothalamo-hypophyseal system and the pituitary gland Dr. Zsuzsanna Tóth Semmelweis University, Dept. of Anatomy, Histology and Embryology Homeostatic integration within the hypothalamus Endocrine system The hypothalamo-hypophyseal system- neuroendocrine system Neurosecretion is a special feature in the hypothalamo-hypophyseal system release of neurohormones neurosecretory cell Ernst and Berta Scharrer, 1928 Béla Halász Halasz-knife János Szentágothai Identification of different neurohormones and the specific nuclei where they are produced ADH containing fibers and accumulation of ADH in the Miklós Palkovits Palkovits M: Isolated removal of hypothalamic or other brain posterior pituitary, sagittal section nuclei of the rat. Brain Res 59:449-450 (1973) Paraventricular nucleus Median eminence ADH accumulation right to the knife cut ADH immunohistochemistry, rat hypothalamus demonstrates the direction of the transport coronal section Hypothalamic nuclei and areas Anterior region n. anterior n. preopticus med. and lat. • n. paraventricularis n. supraopticus n. suprachiasmaticus Medial region • Periventricular zone Medial zone n. ventro- and dorsomedialis • n. infundibularis (arcuatus) Lateral zone dorsolateral hypothalamic area medial forebrain bundle Posterior region n. hypothalamicus posterior corpus mamillare contributes to the HTH system Neurosecretory cells are the magno- and parvocellular neurons in the hypothalamus The pituitary is connected with the hypothalamus via the infundibulum Blood supply: Superior hypophyseal artery –
    [Show full text]
  • The Endocrine System
    The endocrine system Zsuzsanna Tóth, PhD Semmelweis University, Dept. of Anatomy, Histology and Embryology The role of the autonomic nervous system Claude Bernard • „milieu intérieur” concept; every organism lives in its internal environment that is constant and independent form the external environment Walter Bradford Cannon homeostasis; • an extension of the “milieu interieur” concept • consistence in an open system requires mechanisms that act to maintain that consistency • steady‐state conditions require that any tendency toward change automatically meets with factors that resist that change • regulating systems that determine the homeostatic state : o autonomic nervous system ( sympathetic, parasympathetic, enteral) o endocrine system Positive feedback + Disrupted sleep, Fatigue: disabled increases fatigue stress coping Stress, disrupted + sleep + Negative feedback Body temperature ↑ + Body sweets more ‐ feedback Homeostatic integration within the hypothalamus Endocrine system Not all endocrine glands are under hypothalamic control. The endocrine system Classic endocrine organs Pituitary gland (hypophysis) Pajzsmirigy, Thyroid and Thyroid and mellékpajzsmirigy Parathyroid glands Pineal gland Parathyroid glands Adrenal gland Pancreas: Testicles Islets of Ovaries Langerhans Endocrine gland: • Epithelial origin (except the adrenal medulla) • No excretory ducts, unlike in the exocrine glands (i. e. salivary gland) • Lobes, and lobules, separated by connective tissue septa • Hormone release into the bloodstream • Special, fenestrated
    [Show full text]
  • Interrelationships of the Anterior Pituitary and Thyroid Glands
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1935 Interrelationships of the anterior pituitary and thyroid glands Orlo K. Behr University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Behr, Orlo K., "Interrelationships of the anterior pituitary and thyroid glands" (1935). MD Theses. 370. https://digitalcommons.unmc.edu/mdtheses/370 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. INTERRELATIONSHIPS OF THE ANTERIOR PITUITARY AND THYROID GLANDS Senior Thesis 1935 Orlo K. Behr TABLE OF CONTENTS page Introduction Experimental work ......................................... l Thyroid Ablation in its Relation to the Anterior Pituitary Gland ••••••••••..•••••••••.• 1 Interrelationships in Metamorphosis and Body Growth •••.•.•..•...••....•...••...•.•••..• 4: Relation of Anterior Pituitary to Thyroid Gland Structure ••••••••••••••.••••••••••••••••• 9 Relation of Anterior Pituitary to Basal Metaboli sm ••.•••.•••••••••••.••.••..••.•.••..• 16 Relation of Anterior Pituitary to Exophthal- mo e ••••••••••••••••••••••••••.••••••••••••••••
    [Show full text]
  • (Ssris) Versus Estradiol Administration on Anterior Pituitary
    The Egyptian Journal of Anatomy, Jan. 2018; 41(1):75-90 Effect of selective serotonin reuptake inhibitors (SSRIs) versus estradiol administration on anterior pituitary cell population and possible Original regenerative capacity in ovariectomized adult albino rats Article George F.B. Hanna, Hany W. Abdel Malak, Mariam A. Amin and Mohamed M. Sonbol Anatomy Department, Faculty of Medicine, Ain Shams University ABSTRACT Background: Reproductive ageing in women and the hormonal changes that occur during the onset of human menopause have been ascribed solely to ovarian failure and oocyte depletion. However, some studies have shown the central nervous system to be the major regulator of age-related reproductive dysfunction. Moreover, it has been postulated that the pituitary gland plays a key role in the menopausal process. Estradiol is a form of estrogen, a female sex hormone produced by the ovaries. Estradiol is used to treat symptoms of menopause such as hot flashes, and vaginal dryness, burning, and irritation. On the other hand, selective serotonin reuptake inhibitors (SSRIs) ease depression by increasing levels of serotonin in the brain. Aim of work: Thus, it became the aim of the present study, to elucidate the effect of SSRIs versus estradiol in ovariectomized rats on the overall anterior pituitary cell population with special emphasis on the Folliculo-stellate (FS) cells. Material and Methods: Thirty adult female Albino rats, ageing 3-4 months and 140-170 gm body weight were used in the present study. They were divided into 4 groups as follows: Group A (control group): further subdivided into 2 subgroups each including 6 rats. A1: rats were left untreated throughout the experiment.
    [Show full text]