GLOSSARY of HISTOLOGICAL & MICRO-ANATOMICAL TERMS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ISSN: 2320-5407 Int
ISSN: 2320-5407 Int. J. Adv. Res. 6(9), 979-984 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/7759 DOI URL: http://dx.doi.org/10.21474/IJAR01/7759 RESEARCH ARTICLE CORNEAL ALTERATION IN EYES WITH PSEUDOEXFOLIATION SYNDROME. Dr. Tania Sadiq1, Prof. Dr. Syed Tariq Qureshi2, Dr. Arshi Nazir3 and Dr Anshulee Sood4. 1. Postgraduate Scholar, Department of ophthalmology government medical college, srinagar. 2. Professor and Head, Department of ophthalmology government medical college, srinagar. 3. Registrar, Department of ophthalmology government medical college, srinagar. 4. Fellow, Department of ophthalmology government medical college, srinagar. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Background: Pseudoexfoliation syndrome (PXS) is an age-related systemic microfibrillopathy, caused by gradual deposition of Received: 24 July 2018 extracellular grey and white material over various tissues .In Final Accepted: 30 August 2018 pseudoexfoliation eyes, corneal endothelial changes are Published: September 2018 noted.Objective of Our study was to find corneal alterations among Keywords:- patients of Pseudoexfoliation syndrome of Kashmir region. Corneal Endothelium, Corneal Material And Methods:After obtaining the ethical clearance from the Endothelial cell density,Central Corneal institutional ethical committee,150 patients withPseudoexfoliation Thickness, , Pseudoexfoliation . were included in our Descriptive(Observational )study. Thorough ocular evaluation was done and corneal changes were noted including corneal endothelial cell density and Central corneal thickness using NON CONTACT specular microscope .Appropriate statistical tests were used for analyzing data. Results:Pseudoexfoliation was predominantly seen in males . Mean Central corneal thickness in Pseudoexfoliation with glaucoma eyes was(509.6+13.73μ) which was lower when compared with mean central corneal thickness in Pseudoexfoliation without glaucoma eyes (523.5+17.15 μ). -
Chapter 24 Primary Sex Organs = Gonads Produce Gametes Secrete Hormones That Control Reproduction Secondary Sex Organs = Accessory Structures
Anatomy Lecture Notes Chapter 24 primary sex organs = gonads produce gametes secrete hormones that control reproduction secondary sex organs = accessory structures Development and Differentiation A. gonads develop from mesoderm starting at week 5 gonadal ridges medial to kidneys germ cells migrate to gonadal ridges from yolk sac at week 7, if an XY embryo secretes SRY protein, the gonadal ridges begin developing into testes with seminiferous tubules the testes secrete androgens, which cause the mesonephric ducts to develop the testes secrete a hormone that causes the paramesonephric ducts to regress by week 8, in any fetus (XX or XY), if SRY protein has not been produced, the gondal ridges begin to develop into ovaries with ovarian follicles the lack of androgens causes the paramesonephric ducts to develop and the mesonephric ducts to regress B. accessory organs develop from embryonic duct systems mesonephric ducts / Wolffian ducts eventually become male accessory organs: epididymis, ductus deferens, ejaculatory duct paramesonephric ducts / Mullerian ducts eventually become female accessory organs: oviducts, uterus, superior vagina C. external genitalia are indeterminate until week 8 male female genital tubercle penis (glans, corpora cavernosa, clitoris (glans, corpora corpus spongiosum) cavernosa), vestibular bulb) urethral folds fuse to form penile urethra labia minora labioscrotal swellings fuse to form scrotum labia majora urogenital sinus urinary bladder, urethra, prostate, urinary bladder, urethra, seminal vesicles, bulbourethral inferior vagina, vestibular glands glands Strong/Fall 2008 Anatomy Lecture Notes Chapter 24 Male A. gonads = testes (singular = testis) located in scrotum 1. outer coverings a. tunica vaginalis =double layer of serous membrane that partially surrounds each testis; (figure 24.29) b. -
Oogenesis in Mammals
OOGENESIS IN MAMMALS In contrast to most other vertebrates , mammals do not replenish the stores of oocytes present in the ovary at birth. At birth the human ovaries contain about 1 million oocytes ( many of which are already degenerating) that have been arrested in the diplotene stage of the first meiotic division . These oocytes are already surrounded by a layer of follicular cells or granulosa cells , and the complex of ovum and its surrounding cellular investments is known as a follicle . Of all the germ cells present in the ovary ,only about 400 (one per menstrual cycle) will reach maturity and become ovulated. The remainder develop to varying degrees and then undergo atresia (degeneration). Oocytes first become associated with follicular cells in the late fetal period , when they are going through early prophase of the first meiotic division . The primary oocyte (so called because it is undergoing the first meiotic division ) plus its incomplete covering of flattened follicular cells is called a primordial follicle . According to Gougeon (1993) a follicle passes through three major phases on its way to ovulation. The first phase is characterized by a large pool of nongrowing follicles , approximately 500,000 per ovary at birth. In this pool are primordial follicles, which develop into primary follicles by surrounding themselves with a complete single layer of cuboidal follicular cells . By this time , the oocytes have entered the first period of meiotic arrest , the diplotene stage . In human , essentially all oocytes , unless Page 1 of 5 : SEM-2 (GEN ) , Unit#6 : OOGENESIS : Pritha Mondal they degenerate ,remain arrested in the diplotene stage until puberty ; some will not progress past the diplotene stage until the woman’s last reproductive cycle (age 45 to 55 years). -
Online Dictionary of Invertebrate Zoology Parasitology, Harold W
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n. -