Bchb D Bacteria P Cyanobacteria C Cyanobacteriia O Synechococcales F Prochlorotrichaceae G Prochlorothrix S Prochlorothrix Hollandica WGS ID ANKN01 1/1-488

Total Page:16

File Type:pdf, Size:1020Kb

Bchb D Bacteria P Cyanobacteria C Cyanobacteriia O Synechococcales F Prochlorotrichaceae G Prochlorothrix S Prochlorothrix Hollandica WGS ID ANKN01 1/1-488 Tree scale: 0.1 bchZ d Bacteria p Eremiobacterota c Eremiobacteria o UBP12 f UBA5184 g BOG-1502 s BOG-1502 sp003134035 WGS ID PLAE01 1/1-377 0.84 bchZ GCA 000019165.1 ASM1916v1 protein ABZ83897.1 chlorophyllide reductase subunit z Heliobacterium modesticaldum Ice1 /1-442 0.89 bchZ d Bacteria p Acidobacteriota c Blastocatellia o Chloracidobacteriales f Chloracidobacteriaceae g Chloracidobacterium s Chloracidobacterium thermophilum A WGS ID LMXM01 1/3-449 1.00 bchZ GCA 000226295.1 ASM22629v1 protein AEP12277.1 chlorophyllide reductase subunit Z Chloracidobacterium thermophilum B /3-448 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Roseiflexaceae g Kouleothrix s Kouleothrix aurantiaca WGS ID LJCR01 1/3-438 1.00 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Roseiflexaceae g UBA965 s UBA965 sp002292925 WGS ID DBCF01 1/3-464 0.79 bchZ GCA 000017805.1 ASM1780v1 protein ABU59783.1 chlorophyllide reductase subunit Z Roseiflexus castenholzii DSM 13941 /3-462 1.00 bchZ GCA 000016665.1 ASM1666v1 protein ABQ91617.1 chlorophyllide reductase subunit Z Roseiflexus sp. RS-1 /3-455 0.98 0.90 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g UBA1466 s UBA1466 sp002325605 WGS ID DCSM01 1/1-455 bchZ GCA 000022185.1 ASM2218v1 protein ACM55469.1 chlorophyllide reductase subunit Z Chloroflexus sp. Y-400-fl /3-458 1.00 0.52 bchZ GCA 000018865.1 ASM1886v1 protein ABY36984.1 chlorophyllide reductase subunit Z Chloroflexus aurantiacus J-10-fl /3-460 0.99 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Chloroflexus s Chloroflexus islandicus WGS ID LWQS01 1/3-458 0.65 bchZ GCA 000021945.1 ASM2194v1 protein ACL23772.1 chlorophyllide reductase subunit Z Chloroflexus aggregans DSM 9485 /3-460 0.69 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Chloroploca s Chloroploca asiatica WGS ID LYXE01 1/3-474 1.00 0.84 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Oscillochloris s Oscillochloris trichoides WGS ID ADVR01 1/3-465 0.98 bchZ GCA 000152145.1 ASM15214v1 protein EFO79679.1 chlorophyllide reductase subunit Z Oscillochloris trichoides DG6 /3-467 bchZ GCA 000020525.1 ASM2052v1 protein ACF13285.1 chlorophyllide reductase subunit Z Chloroherpeton thalassium ATCC 35110 /1-433 0.99 bchZ d Bacteria p Bacteroidota c Chlorobia o Chlorobiales f Chloroherpetonaceae g GBChlB s GBChlB sp000724175 WGS ID JPGV01 1/1-431 1.00 bchZ d Bacteria p Bacteroidota c Chlorobia o Chlorobiales f Chloroherpetonaceae g Thermochlorobacter s Thermochlorobacter aerophilum WGS ID PHFL01 1/1-437 bchZ GCA 000020505.1 ASM2050v1 protein ACF10547.1 chlorophyllide reductase subunit Z Chlorobaculum parvum NCIB 8327 /1-430 1.00 1.00 bchZ d Bacteria p Bacteroidota c Chlorobia o Chlorobiales f Chlorobiaceae g Chlorobaculum s Chlorobaculum sp001602925 WGS ID LUZT01 1/1-429 0.90 bchZ GCA 000006985.1 ASM698v1 protein AAM73341.1 chlorophyllide reductase bchZ subunit Chlorobium tepidum TLS /1-421 bchZ GCA 000020625.1 ASM2062v1 protein ACF45227.1 chlorophyllide reductase subunit Z Prosthecochloris aestuarii DSM 271 /1-434 1.00 0.97 bchZ d Bacteria p Bacteroidota c Chlorobia o Chlorobiales f Chlorobiaceae g Chlorobium A s Chlorobium A sp003182595 WGS ID PDNZ01 1/1-435 1.00 bchZ GCA 000020545.1 ASM2054v1 protein ACE03148.1 chlorophyllide reductase subunit Z Chlorobium phaeobacteroides BS1 /1-435 0.84 bchZ GCA 000012485.1 ASM1248v1 protein ABB23014.1 Chlorophyllide reductase subunit Z Chlorobium luteolum DSM 273 /1-433 0.69 bchZ GCA 000016085.1 ASM1608v1 protein ABP36214.1 chlorophyllide reductase subunit Z Chlorobium phaeovibrioides DSM 265 /1-434 bchZ GCA 000020465.1 ASM2046v1 protein ACD89256.1 chlorophyllide reductase subunit Z Chlorobium limicola DSM 245 /1-432 0.89 0.77 bchZ GCA 000015125.1 ASM1512v1 protein ABL66488.1 chlorophyllide reductase subunit Z Chlorobium phaeobacteroides DSM 266 /1-433 0.82 bchZ d Bacteria p Bacteroidota c Chlorobia o Chlorobiales f Chlorobiaceae g Chlorobium s Chlorobium ferrooxidans WGS ID MPJE01 1/1-437 0.97 bchZ GCA 000168715.1 ASM16871v1 protein EAT58238.1 chlorophyllide reductase subunit Z Chlorobium ferrooxidans DSM 13031 /1-433 0.96 bchZ GCA 000012585.1 ASM1258v1 protein ABB28967.1 Chlorophyllide reductase subunit Z Chlorobium chlorochromatii CaD3 /1-425 0.80 bchZ GCA 000020645.1 ASM2064v1 protein ACF42515.1 chlorophyllide reductase subunit Z Pelodictyon phaeoclathratiforme BU-1 /1-435 1.00 bchZ GCA 000144605.1 ASM14460v1 protein ADL02349.1 chlorophyllide reductase subunit Z Brevundimonas subvibrioides ATCC 15264 /1-452 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Maritimibacter s Maritimibacter sp002695005 WGS ID NZNT01 1/1-446 bchZ GCA 000442255.1 Salmuc protein EPX76007.1 Chlorophyllide reductase subunit BchZ Salipiger mucosus DSM 16094 /1-444 0.99 bchZ GCA 000170875.1 ASM17087v1 protein EDM71598.1 chlorophyllide reductase subunit Z Roseobacter sp. AzwK-3b /1-445 0.97 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g HLUCCA08 s HLUCCA08 sp003129565 WGS ID QETF01 1/1-453 0.96 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Roseovarius s Roseovarius gaetbuli WGS ID FWFJ01 1/1-443 0.93 bchZ GCA 000170775.1 ASM17077v1 protein EDM32206.1 putative chlorophyllide reductase BchZ subunit Roseovarius sp. TM1035 /1-444 0.95 0.94bchZ GCA 000152845.1 ASM15284v1 protein EAQ27308.1 putative chlorophyllide reductase BchZ subunit Roseovarius sp. 217 /1-444 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Mameliella s Mameliella alba WGS ID NIWA01 1/1-452 0.94 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Roseivivax A s Roseivivax A roseus WGS ID FOGU01 1/1-447 0.53 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Roseivivax s Roseivivax jejudonensis WGS ID FWFK01 1/1-448 0.51 bchZ GCA 000520615.1 SOAPdenovo v1.05 protein ETW12220.1 chlorophyllide reductase subunit Z Roseivivax atlanticus /1-442 0.90 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Tranquillimonas s Tranquillimonas alkanivorans WGS ID FOXA01 1/1-445 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Hwanghaeicola s Hwanghaeicola aestuarii WGS ID QKZL01 1/1-444 0.56 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Maribius s Maribius salinus WGS ID FQZA01 1/1-443 0.89 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Pontivivens s Pontivivens insulae WGS ID OMKW01 1/1-450 0.51 0.22 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g HLUCCA09 s HLUCCA09 sp001314685 WGS ID LJNT01 1/1-421 0.25 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Jannaschia s Jannaschia seohaensis WGS ID QGDJ01 1/1-443 0.60 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Thalassobacter s Thalassobacter stenotrophicus WGS ID QEOR01 1/1-447 0.850.75 bchZ GCA 000018145.1 ASM1814v1 protein ABV95252.1 bacteriachlorophyllide reductase iron protein subunit Z Dinoroseobacter shibae DFL 12 = DSM 16493 /1-442 0.83 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Roseicyclus s Roseicyclus mahoneyensis WGS ID QGGW01 1/1-445 0.97 bchZ GCA 000590925.1 ASM59092v1 protein AHM03477.1 Chlorophyllide reductase subunit BchZ Roseibacterium elongatum DSM 19469 /1-445 0.99 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Roseibacterium s Roseibacterium sp001314805 WGS ID LJSY01 1/1-445 0.64 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g EhC01 s EhC01 sp001650845 WGS ID LXYJ01 1/1-438 1.00 bchZ GCA 000013565.1 ASM1356v1 protein ABD53094.1 chlorophyllide reductase subunit Jannaschia sp. CCS1 /1-438 0.98 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Pseudaestuariivita s Pseudaestuariivita atlantica WGS ID AQQZ01 1/1-445 0.83 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Pseudooctadecabacter s Pseudooctadecabacter jejudonensis WGS ID FWFT01 1/1-443 0.63 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Nereida s Nereida ignava WGS ID FORZ01 1/1-452 0.70 0.66 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Aestuariivita s Aestuariivita boseongensis WGS ID JXYH01 1/1-443 bchZ d Bacteria p Proteobacteria c Alphaproteobacteria o Rhodobacterales f Rhodobacteraceae g Ascidiaceihabitans s Ascidiaceihabitans donghaensis WGS ID OMOR01 1/1-445 0.670.91 bchZ GCA 000154785.2 ASM15478v2 protein AEI96363.1 chlorophyllide reductase subunit Z plasmid Roseobacter litoralis Och 149 /1-444 1.00 bchZ GCA 000014045.1 ASM1404v1 protein ABG29844.1 chlorophyllide reductase subunit Z Roseobacter denitrificans OCh 114 /1-444 0.72 bchZ GCA 000622425.1 32187 draft protein KIN75486.1 Chlorophyllide reductase subunit Z Sulfitobacter guttiformis KCTC 32187 /1-450 0.69 bchZ GCA 000622385.1 NB77 draft protein KIN70037.1 Chlorophyllide reductase subunit BchZ Sulfitobacter noctilucicola /1-450 0.98 bchZ GCA 000156115.1 ASM15611v1
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
    Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948).
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
    UC San Diego UC San Diego Previously Published Works Title A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Permalink https://escholarship.org/uc/item/6z2365ft Journal Microbiome, 8(1) ISSN 2049-2618 Authors Podell, Sheila Blanton, Jessica M Oliver, Aaron et al. Publication Date 2020-06-23 DOI 10.1186/s40168-020-00877-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Podell et al. Microbiome (2020) 8:97 https://doi.org/10.1186/s40168-020-00877-y RESEARCH Open Access A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell1 , Jessica M. Blanton1, Aaron Oliver1, Michelle A. Schorn2, Vinayak Agarwal3, Jason S. Biggs4, Bradley S. Moore5,6,7 and Eric E. Allen1,5,7,8* Abstract Background: Marine sponges and their microbiomes contribute significantly to carbon and nutrient cycling in global reefs, processing and remineralizing dissolved and particulate organic matter. Lamellodysidea herbacea sponges obtain additional energy from abundant photosynthetic Hormoscilla cyanobacterial symbionts, which also produce polybrominated diphenyl ethers (PBDEs) chemically similar to anthropogenic pollutants of environmental concern. Potential contributions of non-Hormoscilla bacteria to Lamellodysidea microbiome metabolism and the synthesis and degradation of additional secondary metabolites are currently unknown. Results: This study has determined relative abundance, taxonomic novelty, metabolic
    [Show full text]
  • Supplementary Information
    Supplementary Information A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell, Jessica M. Blanton, Aaron Oliver, Michelle A. Schorn, Vinayak Agarwal, Jason S. Biggs, Bradley S. Moore, Eric E. Allen Contents Supplementary Figures S1-S13 ....................................................................................................... 2 Supplementary Tables S1-S8 ........................................................................................................ 16 References ..................................................................................................................................... 26 Supplementary Figure 1. Cyanobacteria MAGs classified taxonomically. A) PhyloPhlAn multi-locus concatenated tree [1], with Crinalium epipsammum as an outgroup. B) 16S rRNA gene/and average amino acid identity matrix with closest database relatives. Guidelines for assigning species, genus, family, and order-level taxonomic granularity were based on [2, 3] for AAI and [4] for 16S rRNA gene percent nucleotide identity. A B Pleurocapsa_PCC_7327 1 Stanieria_cyanosphaera 1 SP5CPC1 1 0.993 Prochloron_didemni_P3 1 Prochloron_didemni_P4 Gloeobacter_violaceus Stanieria_cyanosphaera SP5CPC Prochloron_didemni_P3 Prochloron_didemni_P4 Gloeobacter_violaceus Crinalium_epipsammum Desertifilum_IPPASB1220 GM7CHS1 GM202CHS1 GM102CHS1 SP12CHS1 SP5CHS1 Nostoc_punctiforme 92/65 89/61 89/61 89/61 88/51 90/63 91/62 90/60 90/60 -/60 89/60 90/60 88/63 Pleurocapsa_PCC_7327 Crinalium_epipsammum
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Rpon (Σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola Tertiaricarbonis Strain
    Lawrence Berkeley National Laboratory Recent Work Title RpoN (σ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain. Permalink https://escholarship.org/uc/item/9f26h2cp Journal Applied and environmental microbiology, 83(14) ISSN 0099-2240 Authors Yu, Dianzhen Xia, Ming Zhang, Liping et al. Publication Date 2017-07-01 DOI 10.1128/aem.00709-17 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RpoN (σσ54) Is Required for Floc Formation but Not for Extracellular Polysaccharide Biosynthesis in a Floc-Forming Aquincola tertiaricarbonis Strain Dianzhen Yu,a,b Ming Xia,a,b Liping Zhang,a Yulong Song,a You Duan,a,b Tong Yuan,d,f Minjie Yao,c Liyou Wu,d Chunyuan Tian,e Zhenbin Wu,a Xiangzhen Li,c Jizhong Zhou,d Dongru Qiua Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Chinaa ; University of Chinese Academy of Sciences, Beijing, Chinab; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Chinac ; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USAd; School of Life Sciences and Technology, Hubei Engineering University, Xiaogan, Chinae; College of Life Science, Henan Agricultural University, Zhengzhou, Chinaf ABSTRACT Some bacteria are capable of forming flocs, in which bacterial cells become self-flocculated by secreted extracellular polysaccharides and other biopolymers. The floc-forming bacteria play a central role in activated sludge, which has been widely utilized for the treatment of municipal sewage and industrial wastewater. Here, we use a floc-forming bacterium, Aquincola tertiaricarbonis RN12, as a model to explore the biosynthesis of extracellular polysaccharides and the regulation of floc formation.
    [Show full text]
  • A Novel Species of the Marine Cyanobacterium Acaryochloris With
    www.nature.com/scientificreports OPEN A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and Received: 12 February 2018 Accepted: 1 June 2018 lifestyle Published: xx xx xxxx Frédéric Partensky 1, Christophe Six1, Morgane Ratin1, Laurence Garczarek1, Daniel Vaulot1, Ian Probert2, Alexandra Calteau 3, Priscillia Gourvil2, Dominique Marie1, Théophile Grébert1, Christiane Bouchier 4, Sophie Le Panse2, Martin Gachenot2, Francisco Rodríguez5 & José L. Garrido6 All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscof (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It difers from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confrmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp.
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Metagenomics Revealing Molecular Pro Ling of Microbial Community
    Metagenomics Revealing Molecular Proling of Microbial Community Structure and Metabolic Capacity In Bamucuo, Tibet Cai Wei Shanghai Ocean University Dan Sun Shanghai Ocean University Wenliang Yuan Jiaxing University Lei Li Fudan University Chaoxu Dai Shanghai Ocean University Zuozhou Chen Shanghai Ocean University Xiaomin Zeng Central South University Xiangya Public Health School Shihang Wang Shanghai Ocean University Yifan Tang Hunan Normal University School of Medicine Shouwen Jiang Shanghai Ocean University Zhichao Wu Shanghai Ocean University Xiaoning Peng Hunan Normal University School of Medicine Linhua Jiang Fudan University Sihua peng ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0001-7231-666X Research Page 1/36 Keywords: shotgun metagenomics, microbial community, extreme environment, Tibet, Qinghai-Tibet Plateau Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-505014/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/36 Abstract Background: The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and the microorganisms there play vital ecological roles in the global biogeochemical cycle; however, detailed information on the microbial communities in QTP is still lacking. Results: Here, we performed a landscape survey of the microorganisms in Bamucuo, Tibet, resulting in 160,212 (soil) and 135,994 (water) contigs by shotgun metagenomic methods, and generated 75 nearly complete metagenome-assembled genomes (MAGs). Proteobacteria, Actinobacteria and Firmicutes were found to be the three most dominant bacterial phyla, while Euryarchaeota was the most dominant archaeal phylum. Surprisingly, Pandoravirus salinus was found in the soil microbial community.
    [Show full text]
  • Prochlorophyta: a Sub-Class of Chlorophyta
    PROCHLOROPHYTA: A SUB-CLASS OF CHLOROPHYTA Prochlorophyta are a photosynthetic prokaryote members of the phytoplankton group Picoplankton. These oligotrophic organisms are abundant in nutrient-poor tropical waters and use a unique photosynthetic pigment, divinyl-chlorophyll, to absorb light and acquire energy. These organisms lack red and blue Phycobilin pigments and have staked thylakoids, both of which make them different from Cyanophyta. Prochlorophyta were initially discovered in 1975 near the Great Barrier Reef and off the coast of Mexico. The following year, Ralph A. Lewin, of the Scripps Institution of Oceanography, assigned them as a new algal sub-class. Prochlorophytes are very small microbes generally between 0.2 and 2 µm (Photosynthetic picoplankton). They morphologically resemble Cyanobacteria, Members of Prochlorophyta have been found as coccoid (spherical) shapes, like Prochlorococcus, and as filaments, like Prochlorothrix. In addition to Prochlorophyta, other phytoplankton that lack Phycobilin pigments were later found in freshwater lakes in the Netherlands, by Tineke Burger-Wiersma. These organisms were termed Prochlorothrix. Prochloron (a marine symbiont) and Prochlorothrix (from freshwater plankton) contain chlorophylls a and b; Prochlorococcus (common in marine picoplankton) contains divinyl-chlorophylls a and b. In 1986, Prochlorococcus was discovered by Sallie W. Chisholm and his colleagues. These organisms might be responsible for a significant portion of the global primary production. Like cyanophytes they are all clearly photosynthetic prokaryotes, but since they contain no blue or red bilin pigment they were assigned to a new algal sub- class, the Prochlorophyta. However, since their possible phylogenetic relationships to ancestral green-plant chloroplasts have not received support from molecular biology, it now seems expedient to consider them as aberrant cyanophytes.
    [Show full text]
  • Biosynthesis of 2-Hydroxyisobutyric Acid (2-HIBA) from Renewable Carbon Thore Rohwerder*, Roland H Müller
    Rohwerder and Müller Microbial Cell Factories 2010, 9:13 http://www.microbialcellfactories.com/content/9/1/13 RESEARCH Open Access Biosynthesis of 2-hydroxyisobutyric acid (2-HIBA) from renewable carbon Thore Rohwerder*, Roland H Müller Abstract Nowadays a growing demand for green chemicals and cleantech solutions is motivating the industry to strive for bio- based building blocks. We have identified the tertiary carbon atom-containing 2-hydroxyisobutyric acid (2-HIBA) as an interesting building block for polymer synthesis. Starting from this carboxylic acid, practically all compounds posses- sing the isobutane structure are accessible by simple chemical conversions, e. g. the commodity methacrylic acid as well as isobutylene glycol and oxide. During recent years, biotechnological routes to 2-HIBA acid have been proposed and significant progress in elucidating the underlying biochemistry has been made. Besides biohydrolysis and biooxi- dation, now a bioisomerization reaction can be employed, converting the common metabolite 3-hydroxybutyric acid to 2-HIBA by a novel cobalamin-dependent CoA-carbonyl mutase. The latter reaction has recently been discovered in the course of elucidating the degradation pathway of the groundwater pollutant methyl tert-butyl ether (MTBE) in the new bacterial species Aquincola tertiaricarbonis. This discovery opens the ground for developing a completely bio- technological process for producing 2-HIBA. The mutase enzyme has to be active in a suitable biological system pro- ducing 3-hydroxybutyryl-CoA, which is the precursor of the well-known bacterial bioplastic polyhydroxybutyrate (PHB). This connection to the PHB metabolism is a great advantage as its underlying biochemistry and physiology is well understood and can easily be adopted towards producing 2-HIBA.
    [Show full text]