A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948). -
A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Bradymonabacteria, a Novel Bacterial Predator Group with Versatile
Mu et al. Microbiome (2020) 8:126 https://doi.org/10.1186/s40168-020-00902-0 RESEARCH Open Access Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments Da-Shuai Mu1,2, Shuo Wang2, Qi-Yun Liang2, Zhao-Zhong Du2, Renmao Tian3, Yang Ouyang3, Xin-Peng Wang2, Aifen Zhou3, Ya Gong1,2, Guan-Jun Chen1,2, Joy Van Nostrand3, Yunfeng Yang4, Jizhong Zhou3,4 and Zong-Jun Du1,2* Abstract Background: Bacterial predation is an important selective force in microbial community structure and dynamics. However, only a limited number of predatory bacteria have been reported, and their predatory strategies and evolutionary adaptations remain elusive. We recently isolated a novel group of bacterial predators, Bradymonabacteria, representative of the novel order Bradymonadales in δ-Proteobacteria. Compared with those of other bacterial predators (e.g., Myxococcales and Bdellovibrionales), the predatory and living strategies of Bradymonadales are still largely unknown. Results: Based on individual coculture of Bradymonabacteria with 281 prey bacteria, Bradymonabacteria preyed on diverse bacteria but had a high preference for Bacteroidetes. Genomic analysis of 13 recently sequenced Bradymonabacteria indicated that these bacteria had conspicuous metabolic deficiencies, but they could synthesize many polymers, such as polyphosphate and polyhydroxyalkanoates. Dual transcriptome analysis of cocultures of Bradymonabacteria and prey suggested a potential contact-dependent predation mechanism. Comparative genomic analysis with 24 other bacterial predators indicated that Bradymonabacteria had different predatory and living strategies. Furthermore, we identified Bradymonadales from 1552 publicly available 16S rRNA amplicon sequencing samples, indicating that Bradymonadales was widely distributed and highly abundant in saline environments. Phylogenetic analysis showed that there may be six subgroups in this order; each subgroup occupied a different habitat. -
New 16S Rrna Primers to Uncover Bdellovibrio and Like Organisms Diversity and Abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet
New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance Jade Ezzedine, Cécile Chardon, Stéphan Jacquet To cite this version: Jade Ezzedine, Cécile Chardon, Stéphan Jacquet. New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity and abundance. Journal of Microbiological Methods, Elsevier, 2020, 10.1016/j.mimet.2020.105996. hal-02935301 HAL Id: hal-02935301 https://hal.inrae.fr/hal-02935301 Submitted on 10 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Microbiological Methods 175 (2020) 105996 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth New 16S rRNA primers to uncover Bdellovibrio and like organisms diversity T and abundance ⁎ Jade A. Ezzedine, Cécile Chardon, Stéphan Jacquet Université Savoie Mont-Blanc, INRAE, UMR CARRTEL, Thonon-les-Bains, France ARTICLE INFO ABSTRACT Keywords: Appropriate use and specific primers are important in assessing the diversity and abundance of microbial groups Bdellovibrio and like organisms of interest. Bdellovibrio and like organisms (BALOs), that refer to obligate Gram-negative bacterial predators of Primer design other Gram-negative bacteria, evolved in terms of taxonomy and classification over the past two decades. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Supplementary Information
Supplementary Information A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell, Jessica M. Blanton, Aaron Oliver, Michelle A. Schorn, Vinayak Agarwal, Jason S. Biggs, Bradley S. Moore, Eric E. Allen Contents Supplementary Figures S1-S13 ....................................................................................................... 2 Supplementary Tables S1-S8 ........................................................................................................ 16 References ..................................................................................................................................... 26 Supplementary Figure 1. Cyanobacteria MAGs classified taxonomically. A) PhyloPhlAn multi-locus concatenated tree [1], with Crinalium epipsammum as an outgroup. B) 16S rRNA gene/and average amino acid identity matrix with closest database relatives. Guidelines for assigning species, genus, family, and order-level taxonomic granularity were based on [2, 3] for AAI and [4] for 16S rRNA gene percent nucleotide identity. A B Pleurocapsa_PCC_7327 1 Stanieria_cyanosphaera 1 SP5CPC1 1 0.993 Prochloron_didemni_P3 1 Prochloron_didemni_P4 Gloeobacter_violaceus Stanieria_cyanosphaera SP5CPC Prochloron_didemni_P3 Prochloron_didemni_P4 Gloeobacter_violaceus Crinalium_epipsammum Desertifilum_IPPASB1220 GM7CHS1 GM202CHS1 GM102CHS1 SP12CHS1 SP5CHS1 Nostoc_punctiforme 92/65 89/61 89/61 89/61 88/51 90/63 91/62 90/60 90/60 -/60 89/60 90/60 88/63 Pleurocapsa_PCC_7327 Crinalium_epipsammum -
Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct. -
A Novel Species of the Marine Cyanobacterium Acaryochloris With
www.nature.com/scientificreports OPEN A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and Received: 12 February 2018 Accepted: 1 June 2018 lifestyle Published: xx xx xxxx Frédéric Partensky 1, Christophe Six1, Morgane Ratin1, Laurence Garczarek1, Daniel Vaulot1, Ian Probert2, Alexandra Calteau 3, Priscillia Gourvil2, Dominique Marie1, Théophile Grébert1, Christiane Bouchier 4, Sophie Le Panse2, Martin Gachenot2, Francisco Rodríguez5 & José L. Garrido6 All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscof (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It difers from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confrmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. -
Prochlorophyta: a Sub-Class of Chlorophyta
PROCHLOROPHYTA: A SUB-CLASS OF CHLOROPHYTA Prochlorophyta are a photosynthetic prokaryote members of the phytoplankton group Picoplankton. These oligotrophic organisms are abundant in nutrient-poor tropical waters and use a unique photosynthetic pigment, divinyl-chlorophyll, to absorb light and acquire energy. These organisms lack red and blue Phycobilin pigments and have staked thylakoids, both of which make them different from Cyanophyta. Prochlorophyta were initially discovered in 1975 near the Great Barrier Reef and off the coast of Mexico. The following year, Ralph A. Lewin, of the Scripps Institution of Oceanography, assigned them as a new algal sub-class. Prochlorophytes are very small microbes generally between 0.2 and 2 µm (Photosynthetic picoplankton). They morphologically resemble Cyanobacteria, Members of Prochlorophyta have been found as coccoid (spherical) shapes, like Prochlorococcus, and as filaments, like Prochlorothrix. In addition to Prochlorophyta, other phytoplankton that lack Phycobilin pigments were later found in freshwater lakes in the Netherlands, by Tineke Burger-Wiersma. These organisms were termed Prochlorothrix. Prochloron (a marine symbiont) and Prochlorothrix (from freshwater plankton) contain chlorophylls a and b; Prochlorococcus (common in marine picoplankton) contains divinyl-chlorophylls a and b. In 1986, Prochlorococcus was discovered by Sallie W. Chisholm and his colleagues. These organisms might be responsible for a significant portion of the global primary production. Like cyanophytes they are all clearly photosynthetic prokaryotes, but since they contain no blue or red bilin pigment they were assigned to a new algal sub- class, the Prochlorophyta. However, since their possible phylogenetic relationships to ancestral green-plant chloroplasts have not received support from molecular biology, it now seems expedient to consider them as aberrant cyanophytes. -
CA 26 Moluscos Nudibranquios De La Costa Tropical
CUADERNOS N0 26 Ao 12 amBientales Octubre 2015 EDITA DOS POR LA CO NCEJ ALCA DE URBA NISM O Y OBR AS PP BLIC AS , Y MEDIO AMBIE NTE E INIC IATIV A UR BAN Moluscos Nudibranquios de la Costa Tropical CUADERNOS amBientales MOLUSCOS NUDIBRANQUIOS DE LA COSTA TROPICAL Aso cia ció n Bu xu s 2520 15 Fernando Aguado Hernández Sergio López González EDITADO POR LA CONCEJALCA DE U RBANISMO Y O BRAS P PBLICAS , Y M EDIO A MBIENTE E INICIATIVA U RBAN DEL A YTO . DE M OTRIL CUADERNOS Mlc ndibani de la Ca Tical am Bien tales cA mi ade, Jan Anni Encanaci(n, a l e d le deb Mlc ndibani 3 in c a nnca hbiea did cneca mi e#i cn el gan a l: EL MAR. (Segi L(e Gn le ) Los nudibranquios o babosas marinas son Estn presenten en todos los mares y oc a- cA mi made, Rai, abajada infaigable, de la e aend# a ama unos seres realmente atractivos, tanto por nos del mundo con unas 5000 especies dife- la ida a enfename al mnd cn na nia (Fenand Agad su variedad de formas, como por sus vivas rentes. En el Mediterrneo existe un nmero Hennde ) coloraciones y comportamiento. Estn consi- indeterminado de especies de estos maravi- derados como los invertebrados ms bellos llosos seres, aunque se cree que podra ser del mar. superior a las 200. cr éditos :F ERNANDO A GUADO H ERNNDEZ Y S ERGIO L PEZ G ONZLEZ :F OTOGRAFA : F ERNANDO A GUADO H ERNNDEZ Y SERGIO L PEZ G ONZLEZ :D IBUJOS : A LEJANDRO S NCHEZ T ALLN EDITA : CONCEJALA DE U RBANISMO Y O BRAS P BLICAS , Y M EDIO A MBIENTE E INICIATIVA U RBAN COORDINADOR DE LA COLECCIN : F ERNANDO A LCALDE R ODRGUEZ ISSN: 1695-8780 DEP . -
Chemical Ecology of Western Indian Ocean Reef Sponges
Chemical ecology of Western Indian Ocean reef sponges A dissertation by Stephanie Helber Bremen, August 2016 Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften der Universität Bremen, Fachbereich Biologie/Chemie. Die vorliegende Arbeit wurde in der Zeit von März 2013 bis August 2016 am Leibniz-Zentrum für Marine Tropenökologie (ZMT) in Bremen angefertigt. Finanziert wurde Arbeit von der Leibniz Gemeinschaft (SAW-2013-ZMT-4). Gutachter: Prof. Dr. Claudio Richter (Erstgutachter) Prof. Dr. Peter Schupp (Zweitgutachter) Prüfer: Prof. Dr. Matthias Wolff Dr. Sven Rohde Weitere Mitglieder des Prüfungsausschusses: Claudia Pogoreutz (Doktorandin) Natalie Prinz (Studentin) Datum des Promotionskolloquiums: 29. September 2016 © 2016 Stephanie Helber Für meine Mama SUMMARY Sponges are among the dominant benthic organisms on coral reefs, representing important spatial competitors for reef-building corals. Coral reefs have experienced drastic declines in coral cover and corresponding increases in the abundance of other spatial competitors, such as macroalgae, corallimorpharians and sponges, due to a combination of global and local stressors. The ability of sponges to chemically defend themselves against predators, microbes and other competitors may partially explain their high abundance on reefs worldwide. Nonetheless, studies investigating sponge abundance and chemical ecology are rare, particularly in the Western Indian Ocean, which is considered a hotspot of coral and sponge biodiversity. Thus, this thesis is the first study that provides insights into the chemical ecology of sponges from the Western Indian Ocean. The thesis consists of a general introduction, three chapters investigating in detail different aspects of chemical defence mechanisms in sponges from Zanzibar and a general discussion. In Chapter 1 I assessed the benthic community composition of the reef at Bawe, an island on Zanzibar’s West Coast.