And Transcriptomic-Profiling of the Host-Associated Cyanobacteria Prochloron and Acaryochloris Marina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biologically Active Compounds from Pacific Tunicates;
BIOLOGICALLY ACTIVE COMPOUNDS FROM PACIFIC TUNICATES by David Francis Sesin A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Medicinal Chemistry The University of Utah December 1986 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Utah: J. Willard Marriott Digital Library THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by DAVID FRANCIS SESIN This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory .. September 16. 1986 Chainnan:chris M. Ire'iand. Ph.D. September 16. 1986 Arthur D. Broom. Ph.D. September 16. 1986 ark E. Sanders. Ph.D. September 16, 1986 Martin P. Schweizer.�.D. September 16. 1986 David M. Grant. Ph.D. THE VI'IiIVERSITY OF UTAH GRADUATE SCHOOL FINAL READING APPRC)VAL To the Graduate Council of The University of Utah: I have read the dissertation of David Francis Sesin 10 Its final form and have found that (I) its format. citations. and bibliographic style are consistent and acceptable; (2) its illustrative materials including figures. tables. and charts are in place: and (3) the final manuscript is satisfactory to the Supervis ory Committee and is ready for submission to the Graduate School. Date Chris M. Ireland. Ph.D. Chairp(,rson. Supt'rvisory Commill('t, Approved for the Major Departmenl Arthur D. Broom. Ph.D. Chairman / Dean Approved ror lhe GradU,Ill' Coullcil Dean of The (;raduate Sdl()ol Copyright@ David Francis Sesin 1986 All Rights Reserved ABSTRACT Tunicates have proven to be a rich source of structurally-diverse metabolites covering a broad spectrum of biological activities. -
Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948). -
A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
UC San Diego UC San Diego Previously Published Works Title A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Permalink https://escholarship.org/uc/item/6z2365ft Journal Microbiome, 8(1) ISSN 2049-2618 Authors Podell, Sheila Blanton, Jessica M Oliver, Aaron et al. Publication Date 2020-06-23 DOI 10.1186/s40168-020-00877-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Podell et al. Microbiome (2020) 8:97 https://doi.org/10.1186/s40168-020-00877-y RESEARCH Open Access A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell1 , Jessica M. Blanton1, Aaron Oliver1, Michelle A. Schorn2, Vinayak Agarwal3, Jason S. Biggs4, Bradley S. Moore5,6,7 and Eric E. Allen1,5,7,8* Abstract Background: Marine sponges and their microbiomes contribute significantly to carbon and nutrient cycling in global reefs, processing and remineralizing dissolved and particulate organic matter. Lamellodysidea herbacea sponges obtain additional energy from abundant photosynthetic Hormoscilla cyanobacterial symbionts, which also produce polybrominated diphenyl ethers (PBDEs) chemically similar to anthropogenic pollutants of environmental concern. Potential contributions of non-Hormoscilla bacteria to Lamellodysidea microbiome metabolism and the synthesis and degradation of additional secondary metabolites are currently unknown. Results: This study has determined relative abundance, taxonomic novelty, metabolic -
Additional Analysis of Cyanobacterial Polyamines Distributions Of
Microb. Resour. Syst. Dec.32(2 ):1792016 ─ 186, 2016 Vol. 32, No. 2 Additional analysis of cyanobacterial polyamines ─ Distributions of spermidine, homospermidine, spermine, and thermospermine within the phylum Cyanobacteria ─ Koei Hamana1)*, Takemitsu Furuchi2), Hidenori Hayashi1) and Masaru Niitsu2) 1)Faculty of Engineering, Maebashi Institute of Technology 460-1 Kamisadori-machi, Maebashi, Gunma 371-0816, Japan 2)Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan To further catalogue the distribution of cyanobacterial cellular polyamines, we used HPLC and HPGC to newly analyze the acid-extracted polyamines from 14 cyanobacteria. The colony-forming Nostoc verrucosum (“Ashitsuki”) and Nostoc commune (“Ishikurage”), as well as Anabaena species (Nostocales), contained homospermidine. The thermo-halotolerant Spirulina subsalsa var. salina (Spirulinales), as well as freshwater Spirulina strains, contained spermidine. Putrescine, spermidine, and homospermidine were found in freshwater colony-forming Aphanothece sacrum (“Suizenji-nori”), whereas the halotolerant Aphanothece halophytica and Microcystis species (Chroococcales) contained spermidine alone. In addition to putrescine, spermidine, homospermidine and agmatine, thermospermine was found as a major polyamine in haloalkaliphilic Arthrospira platensis (“Spirulina”) (Oscillatoriales). In the Synechococcales, chlorophyll b-containing Prochlorococcus marina contained spermidine, and chlorophyll d-containing Acaryochloris marina contained -
Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris Marina
crossmark Downloaded from Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina Guangyu E. Chen,a Andrew Hitchcock,a Philip J. Jackson,a,b Roy R. Chaudhuri,a Mark J. Dickman,b C. Neil Hunter,a Daniel P. Canniffea* a Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom ; ChELSI Institute, Department of Chemical and Biological http://jb.asm.org/ Engineering, University of Sheffield, Sheffield, United Kingdomb ABSTRACT The major photopigment of the cyanobacterium Acaryochloris marina is chlorophyll d, while its direct biosynthetic precursor, chlorophyll a, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic pho- totrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosyn- thesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome of Acaryochloris marina contains open reading frames (ORFs) encoding proteins displaying high sequence similar- on April 20, 2016 by PERIODICALS OFFICE, MAIN LIBRARY, UNIVERSITY OF SHEFFIELD ity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophyll a-producing ⌬bciB strain of Synechocystis sp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vi- nyl reductases. We propose that nmrA and frhB be reassigned as bciA and bciB, respectively; transcript and proteomic analysis of Acaryochloris marina reveal that both bciA and bciB are expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8. -
Functional Basis of Microorganism Classification
RESEARCH ARTICLE Functional Basis of Microorganism Classification Chengsheng Zhu1*, Tom O. Delmont2, Timothy M. Vogel2, Yana Bromberg1,3* 1 Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America, 2 Environmental Microbial Genomics, Laboratoire Ampere, École Centrale de Lyon, Université de Lyon, Ecully, France, 3 Institute for Advanced Study, Technische Universität München, Garching, Germany * [email protected] (CZ); [email protected] (YB) Abstract Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classifi- cation based on similarity of physiological and genetic organism traits (polyphasic similarity) OPEN ACCESS is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from Citation: Zhu C, Delmont TO, Vogel TM, Bromberg Y phylogenetic markers, facilitates classification but does not guarantee functional identity (2015) Functional Basis of Microorganism Classification. PLoS Comput Biol 11(8): e1004472. between members of the same taxon or lack of similarity between different taxa. Using over doi:10.1371/journal.pcbi.1004472 thirteen hundred sequenced bacterial genomes, we built a novel function-based microor- Editor: Christine A. Orengo, University College ganism classification scheme, functional-repertoire similarity-based organism network London, UNITED KINGDOM (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively Received: March 27, 2015 defined organism relationships across the known prokaryotic space. It correlates signifi- cantly with the current taxonomy, but the observed discrepancies reveal both (1) the incon- Accepted: July 21, 2015 sistency of functional diversity levels among different taxa and (2) an (unsurprising) bias Published: August 28, 2015 towards prioritizing, for classification purposes, relatively minor traits of particular interest to Copyright: © 2015 Zhu et al. -
Supplementary Information
Supplementary Information A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell, Jessica M. Blanton, Aaron Oliver, Michelle A. Schorn, Vinayak Agarwal, Jason S. Biggs, Bradley S. Moore, Eric E. Allen Contents Supplementary Figures S1-S13 ....................................................................................................... 2 Supplementary Tables S1-S8 ........................................................................................................ 16 References ..................................................................................................................................... 26 Supplementary Figure 1. Cyanobacteria MAGs classified taxonomically. A) PhyloPhlAn multi-locus concatenated tree [1], with Crinalium epipsammum as an outgroup. B) 16S rRNA gene/and average amino acid identity matrix with closest database relatives. Guidelines for assigning species, genus, family, and order-level taxonomic granularity were based on [2, 3] for AAI and [4] for 16S rRNA gene percent nucleotide identity. A B Pleurocapsa_PCC_7327 1 Stanieria_cyanosphaera 1 SP5CPC1 1 0.993 Prochloron_didemni_P3 1 Prochloron_didemni_P4 Gloeobacter_violaceus Stanieria_cyanosphaera SP5CPC Prochloron_didemni_P3 Prochloron_didemni_P4 Gloeobacter_violaceus Crinalium_epipsammum Desertifilum_IPPASB1220 GM7CHS1 GM202CHS1 GM102CHS1 SP12CHS1 SP5CHS1 Nostoc_punctiforme 92/65 89/61 89/61 89/61 88/51 90/63 91/62 90/60 90/60 -/60 89/60 90/60 88/63 Pleurocapsa_PCC_7327 Crinalium_epipsammum -
Response to Vanadate Exposure in Ochrobactrum Tritici Strains
RESEARCH ARTICLE Response to vanadate exposure in Ochrobactrum tritici strains Mariana Cruz Almeida, Rita Branco, Paula V. MoraisID* CEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Vanadium is a transition metal that has been added recently to the EU list of Raw Critical a1111111111 Metals. The growing needs of vanadium primarily in the steel industry justify its increasing economic value. However, because mining of vanadium sources (i. e. ores, concentrates and vanadiferous slags) is expanding, so is vanadium environmental contamination. Bio- leaching comes forth as smart strategy to deal with supply demand and environmental con- OPEN ACCESS tamination. It requires organisms that are able to mobilize the metal and at the same time Citation: Almeida MC, Branco R, Morais PV (2020) are resistant to the leachate generated. Here, we investigated the molecular mechanisms Response to vanadate exposure in Ochrobactrum underlying vanadium resistance in Ochrobactrum tritici strains. The highly resistant strain tritici strains. PLoS ONE 15(2): e0229359. https:// doi.org/10.1371/journal.pone.0229359 5bvl1 was able to grow at concentrations > 30 mM vanadate, while the O. tritici type strain only tolerated < 3 mM vanadate concentrations. Screening of O. tritici single mutants (chrA, Editor: Fanis Missirlis, Cinvestav, MEXICO chrC, chrF and recA) growth during vanadate exposure revealed that vanadate resistance Received: November 6, 2019 was associated with chromate resistance mechanisms (in particular ChrA, an efflux pump Accepted: February 4, 2020 and ChrC, a superoxide dismutase). We also showed that sensitivity to vanadate was corre- Published: February 24, 2020 lated with increased accumulation of vanadate intracellularly, while in resistant cells this was not found. -
A Novel Species of the Marine Cyanobacterium Acaryochloris With
www.nature.com/scientificreports OPEN A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and Received: 12 February 2018 Accepted: 1 June 2018 lifestyle Published: xx xx xxxx Frédéric Partensky 1, Christophe Six1, Morgane Ratin1, Laurence Garczarek1, Daniel Vaulot1, Ian Probert2, Alexandra Calteau 3, Priscillia Gourvil2, Dominique Marie1, Théophile Grébert1, Christiane Bouchier 4, Sophie Le Panse2, Martin Gachenot2, Francisco Rodríguez5 & José L. Garrido6 All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscof (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It difers from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confrmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp. -
Vanadium in Biosphere and Its Role in Biological Processes
Biological Trace Element Research https://doi.org/10.1007/s12011-018-1289-y Vanadium in Biosphere and Its Role in Biological Processes Deepika Tripathi1 & Veena Mani1 & Ravi Prakash Pal1 Received: 9 July 2017 /Accepted: 26 February 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity- related study of vanadium in a biological system. Keywords Metabolic role . Insulin-mimetic . Biological function . Vanadium Introduction essential elements^ which include aluminum (Al), arsenic (As), cobalt (Co), chromium (Cr), fluorine (F), molybdenum Minerals are inorganic elements, without carbon, found in (Mo), nickel (Ni), silicon (Si), tin (Sn), and vanadium (V) [4]. -
Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts
marine drugs Review Origins and Bioactivities of Natural Compounds Derived from Marine Ascidians and Their Symbionts Xiaoju Dou 1,4 and Bo Dong 1,2,3,* 1 Laboratory of Morphogenesis & Evolution, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 4 College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa 850030, China * Correspondence: [email protected]; Tel.: +86-0532-82032732 Received: 29 October 2019; Accepted: 25 November 2019; Published: 28 November 2019 Abstract: Marine ascidians are becoming important drug sources that provide abundant secondary metabolites with novel structures and high bioactivities. As one of the most chemically prolific marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and polyketides, with intricate and novel chemical structures have been identified from ascidians. Some of them have been successfully developed as lead compounds or highly efficient drugs. Although numerous compounds that exist in ascidians have been structurally and functionally identified, their origins are not clear. Interestingly, growing evidence has shown that these natural products not only come from ascidians, but they also originate from symbiotic microbes. This review classifies the identified natural products from ascidians and the associated symbionts. Then, we discuss the diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products that are beneficial for the hosts. Identification of the complex interactions between the symbiont and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive compounds with pharmaceutical potentials. -
Ecological Aspects of the Ascidian Community Along the Israeli Coasts
Ecological aspects of the ascidian community along the Israeli coasts THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Noa Shenkar SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY February 2008 This work was carried out under the supervision of Prof. Yossi Loya This work is dedicated with enormous love to Dror & little Ido תודות Acknowledgments I would like to express my gratitude to many people who helped me during this research. לפרופ' יוסי לויה שזכיתי להיות תלמידתו ולימד אותי מלבד אקולוגיה וביולוגיה ימית גם דבר או שניים על איך להיות בן - אדם. לחברי הועדה המלווה: פרופ' הודי בניהו, פרופ' יאיר אחיטוב ופרופ' אלי גפן שתמכו וייעצו ודלתם תמיד היתה פתוחה בפני . לד"ר אסתי וינטר שלימדה אותי לראות את הטוב בכל דבר . לפרופ' לב פישלזון שהתמזל מזלי להיות שכנתו ולימד אותי מהי זואולוגיה. To my colleagues abroad: To Charlie & Gretchen Lambert for their enthusiasm and love to ascidians. To Patricia Mather (née Kott) for her advice and support. To Elsa Vàzquez Otero, Rosana Moreira da Rocha and Françoise Monniot for teaching me ascidian taxonomy with great love and care. To Xavier Turon for his constructive remarks and to Amy Driskell for helping me with the PCR game. לחברי מעבדתי שליוו אותי לאורך השנים ועזרו בכל עת, ובמיוחד לעומרי בורנשטיין, אלן דניאל, מיה ויזל, עידו מזרחי, רועי סגל, רן סולם ומיכה רוזנפלד. לחברי מעבדת בניהו, יעל זלדמן, מתי הלפרין, ענבל גינסבורג ועידו סלע שתמיד יצאו בשמחה למשימות דיגום איצטלנים מולחברי עבדתו של פרופ' מיכה אילן על החברה והעוגיות . לד"ר איציק בריקנר על החתכים ההיסטולוגים המופלאים, ורדה ווכסלר על הגרפיקה, נעמי פז על העריכה וההגהה, אלכס שלגמן על העזרה הלבבית עם האוספים, וענת גלזר מחברת החשמל.