Additional Analysis of Cyanobacterial Polyamines Distributions Of

Total Page:16

File Type:pdf, Size:1020Kb

Additional Analysis of Cyanobacterial Polyamines Distributions Of Microb. Resour. Syst. Dec.32(2 ):1792016 ─ 186, 2016 Vol. 32, No. 2 Additional analysis of cyanobacterial polyamines ─ Distributions of spermidine, homospermidine, spermine, and thermospermine within the phylum Cyanobacteria ─ Koei Hamana1)*, Takemitsu Furuchi2), Hidenori Hayashi1) and Masaru Niitsu2) 1)Faculty of Engineering, Maebashi Institute of Technology 460-1 Kamisadori-machi, Maebashi, Gunma 371-0816, Japan 2)Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan To further catalogue the distribution of cyanobacterial cellular polyamines, we used HPLC and HPGC to newly analyze the acid-extracted polyamines from 14 cyanobacteria. The colony-forming Nostoc verrucosum (“Ashitsuki”) and Nostoc commune (“Ishikurage”), as well as Anabaena species (Nostocales), contained homospermidine. The thermo-halotolerant Spirulina subsalsa var. salina (Spirulinales), as well as freshwater Spirulina strains, contained spermidine. Putrescine, spermidine, and homospermidine were found in freshwater colony-forming Aphanothece sacrum (“Suizenji-nori”), whereas the halotolerant Aphanothece halophytica and Microcystis species (Chroococcales) contained spermidine alone. In addition to putrescine, spermidine, homospermidine and agmatine, thermospermine was found as a major polyamine in haloalkaliphilic Arthrospira platensis (“Spirulina”) (Oscillatoriales). In the Synechococcales, chlorophyll b-containing Prochlorococcus marina contained spermidine, and chlorophyll d-containing Acaryochloris marina contained spermidine and homospermidine. Thermophilic Thermosynechococcus vulcanus and Thermosynechococcus sp. NK55a, as well as Thermosynechococcus elongatus, contained low levels of spermine in addition to homospermidine. The present 14 and previous 126 strains of cyanobacteria were categorized into spermidine-dominant types, homospermidine-dominant types and spermidine-homospermidine-mix types, but their polyamine profiles have not yet been established as chemotaxonomic markers. Key words: ‌cyanobacteria, homospermidine, polyamine, thermospermine Bacterial cellular polyamine distribution profiles 2005). Diaminopropane, putrescine, cadaverine, and are related to the phylogenetically classified loca- agmatine have been found sporadically. Spermine tions of the bacteria, as well as to the growth tem- and thermospermine have been tentatively detected perature, pH, and salt conditions in bacterial growth as minor polyamines in some thermophiles and halo- environments (Hamana, 2002a; Hamana & Hosoya, alkaliphiles (Hamana et al., 2008). The triamine nor- 2006; Hamana & Matsuzaki, 1992; Hamana et al., spermidine, the tetra-amine norspermine, and penta- 2014; Hosoya et al., 2006). In the oxygen-producing amines are widely distributed in algae (Hamana et photosynthetic cyanobacteria, as the origins of the al., 2013, 2016) but have not been found in cyanobac- plastids of photosynthetic eukaryotic algae, it is use- teria. ful to consider the polyamine profiles and the che- Although cyanobacterial classification has under- motaxonomic usage of the polyamine components in gone phylogenetic analyses based on molecular studies of the early evolution of algae and plants. sequence data (Komarek et al., 2014; MCC-NIES, The cellular polyamines of 126 cyanobacterial 2016; NCBI, 2016), the taxonomy of cyanobacterial strains have been roughly separated into spermi- class, order, family, genus and species is conflicting dine-dominant types and homospermidine-dominant (Oren, 2004; Watanabe, 1995). Here, we analyze the types (Hamana et al., 1983, 1988, 2008; Hosoya et al., cellular polyamines of the 14 newly available cyano- bacteria, including thermophilic (thermotolerant), halophilic (halotolerant), haloalkaliphilic (alkaline-halo- *Corresponding author philic; alkali- and salt-tolerant), polysaccharide-colony E-mail: [email protected] forming, chlorophyll (Chl) b-containing, and Chl Accepted: July 11, 2016 d-containing strains, in order to add them to cyano- ─ 179 ─ Polyamines of cyanobacteria Hamana et al. bacterial polyamine catalogues. We also re-exam- chromatography (HPLC) of the concentrated poly- ined some of our previous cyanobacterial polyamine amines on a Hitachi L6000 with a column of cation- data by using mass cultivation of cyanobacteria and exchange resin [Hitachi 2619F (=Hitachi 2720); 4 mm new chromatographic techniques. Triamines (sper- I.D.×50 mm] (Hamana, 2002b; Hamana et al., 2008; midine and homospermidine) are produced from the Hosoya et al., 2005), instead of using the old-type of diamine putrescine or the guanidinoamine agmatine, HPLC with a column of Kyowa Seimitsu 62210F and then the tetra-amines (spermine and thermo- (4.8 mm I.D.×80 mm) (Hamana et al., 1983, 1988); spermine) are produced from spermidine. The cellu- samples were then quantified by using post-labeled lar distribution of the triamines and tetra-amines is fluorometry after heating with o-phthalaldehyde. thus focused on the phylum Cyanobacteria. After heptafluorobutyrization of the concentrated Seven unique cyanobacteria supplied by NIES polyamines, we performed high-performance gas (National Institute for Environmental Studies, Japan) chromatography (HPGC) with a SHIMADZU GC-17A and NBRC (Biological Resource Center, National and GC-mass spectrometry (HPGC-MS) on a JEOL Institute of Technology and Evaluation, Japan) were JMS-700 equipped with a long capillary column of cultured phototrophically in the light (10-14 h/24 h) InertCap 1MS (0.32 mm I.D.×30 m, df 0.25 mm) (GL at either 20-25℃(mesophiles), 40-50℃(thermotoler- Sciences, Tokyo, Japan) (Furuchi et al., 2015a, b; ants) or 55-60℃(thermophiles) by using 1-10 L of Niitsu et al., 2014), instead of using standard GC with the liquid media designed by NIES (MCC-NIES, a short packed column of 3% SE-30 Chromosorb 2016) or NBRC (NBRC, 2016). Liquid cultures (1 L) of WHP (Gasukuro Kogyo, Tokyo, Japan) (3 mm I.D.× two cyanobacterial DBT strains were purchased 2.1 m) (Hamana et al., 1983, 1988, 2008; Hosoya et al., from DBT (Department of Biotechnology, Institute 2005; Niitsu et al., 1993). He gas was used as the car- of Environmental Biology Co., Shizuoka, Japan). rier gas and in the flame ionization detector. HPGC Although both axenic and non-axenic (i.e. not proven on a SHIMADZU GC-17A was operated at the col- to be axenic) cyanobacterial strains have been used, umn temperature 120-16℃/min-280℃. HPGC on a disadvantage for the use of non-axenic strains was JEOL JMS-700 was operated at the column tempera- not found in the cyanobacterial polyamine analyses ture 90-16℃/min-280℃ and mass spectra were (Hamana et al., 2008; Hosoya et al., 2005). Two dried obtained by using electron impact mode at an ioniza- powder products (A grade and B grade) of tion energy of 70 eV. The molar concentrations of “Spirulina” (Arthrospira platensis) cultured in open cellular polyamines per gram of wet weight of the culture tanks at the Kumejima Factory of Japan starting pellets, as estimated from the HPLC and Algae, Okinawa, Japan were obtained from Japan HPGC analyses using authentic polyamine stan- Algae Co., Ltd. (Tokyo, Japan). Another dried pow- dards, are shown in Table 1 and are compared der product“Spirulina” cultured in the field pools of among those of neighboring species. Hainan DIC Microalgae Co., Ltd., China was obtained In the order Nostocales, some of the Anabaena spe- from DIC Lifetech Co., Ltd. (Tokyo, Japan). cies (Anabaena circinalis, Anabaena akankoensis, “Suizenji-nori” (Aphanothece sacrum) has been cul- Anabaena affinis, and Anabaena spiroides=Anabaena tured by Endoukanagawa-dou Co. (Asakura, crassa) were reclassified into the new genus Fukuoka), Kisen-dou Co. (Asakura, Fukuoka), Tansei- Dolichospermum (NBCI Taxonomy Browser, 2016). dou Co. (Kashima, Kumamoto), and Green Science A mass culture of the DBT strain of filamentous A. Material Inc. (Mashiki, Kumamoto), in Japan. Dried spiroides, as well as other Anabaena and sheets of“Suizenji-nori” were purchased from Dolichospermum species previously analyzed, con- Endoukanagawa-dou Co. in the present study. tained homospermidine as the major polyamine. Organisms (1-10 g wet weight) harvested at the The aquatic (freshwater) Nostoc verrucosum early stationary phase in our laboratory or dried “Ashitsuki” (Sakamoto et al., 2011) as well as the ter- powders (5-10 g) purchased, were homogenized in restrial Nostoc commune“Ishikurage” (Arima et al., 5% perchloric acid (PCA). The PCA extract was 2012) are unique as colony-forming cyanobacteria passed through a column of a cation-exchange resin with extracellular polysaccharides; they contained (Dowex 50 WX8; 1 cm I.D.×3 cm) and eluted from homospermidine as the major polyamine. All of the the column with 6M HCl to concentrate the poly- Nostoc and Anabaena species analyzed had the same amines. We performed high-performance liquid polyamine profile; however, the taxonomy of the two ─ 180 ─ Microb. Resour. Syst. Dec. 2016 Vol. 32, No. 2 Table 1 Cellular polyamine concentrations of cyanobacteria Polyamines (mmol/g wet weight) Phylum Cyanobacteria Ref. Dap Put Cad Spd HSpd Spm TSpm Agm 3 4 5 34 44 343 334 Order Nostocales Anabaena spiroides DBT − 0.11 − − 1.22 − − − Anabaena spiroides NIES-79 2005 − 0.01 − − 0.35 − − − Anabaena circinalis NIES-41 2005 − 0.20 − − 0.57 − − − Anabaena compacta NEIS-806 2005 − − − − 1.50 − − − Anabaena cylindrica IAM M-1 1983 − 0.01 − 0.01 2.18 − − − Anabaena cylindrica IAM M-253 2005 − − − − 1.55 − − − Anabaena planctonica NIES-814 2005 − − − − 0.85 − − − Anabaena solitaria
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
    microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments.
    [Show full text]
  • 50 Annual Meeting of the Phycological Society of America
    50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W.
    [Show full text]
  • Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris Marina
    crossmark Downloaded from Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina Guangyu E. Chen,a Andrew Hitchcock,a Philip J. Jackson,a,b Roy R. Chaudhuri,a Mark J. Dickman,b C. Neil Hunter,a Daniel P. Canniffea* a Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom ; ChELSI Institute, Department of Chemical and Biological http://jb.asm.org/ Engineering, University of Sheffield, Sheffield, United Kingdomb ABSTRACT The major photopigment of the cyanobacterium Acaryochloris marina is chlorophyll d, while its direct biosynthetic precursor, chlorophyll a, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic pho- totrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosyn- thesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome of Acaryochloris marina contains open reading frames (ORFs) encoding proteins displaying high sequence similar- on April 20, 2016 by PERIODICALS OFFICE, MAIN LIBRARY, UNIVERSITY OF SHEFFIELD ity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophyll a-producing ⌬bciB strain of Synechocystis sp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vi- nyl reductases. We propose that nmrA and frhB be reassigned as bciA and bciB, respectively; transcript and proteomic analysis of Acaryochloris marina reveal that both bciA and bciB are expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8.
    [Show full text]
  • Functional Basis of Microorganism Classification
    RESEARCH ARTICLE Functional Basis of Microorganism Classification Chengsheng Zhu1*, Tom O. Delmont2, Timothy M. Vogel2, Yana Bromberg1,3* 1 Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America, 2 Environmental Microbial Genomics, Laboratoire Ampere, École Centrale de Lyon, Université de Lyon, Ecully, France, 3 Institute for Advanced Study, Technische Universität München, Garching, Germany * [email protected] (CZ); [email protected] (YB) Abstract Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classifi- cation based on similarity of physiological and genetic organism traits (polyphasic similarity) OPEN ACCESS is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from Citation: Zhu C, Delmont TO, Vogel TM, Bromberg Y phylogenetic markers, facilitates classification but does not guarantee functional identity (2015) Functional Basis of Microorganism Classification. PLoS Comput Biol 11(8): e1004472. between members of the same taxon or lack of similarity between different taxa. Using over doi:10.1371/journal.pcbi.1004472 thirteen hundred sequenced bacterial genomes, we built a novel function-based microor- Editor: Christine A. Orengo, University College ganism classification scheme, functional-repertoire similarity-based organism network London, UNITED KINGDOM (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively Received: March 27, 2015 defined organism relationships across the known prokaryotic space. It correlates signifi- cantly with the current taxonomy, but the observed discrepancies reveal both (1) the incon- Accepted: July 21, 2015 sistency of functional diversity levels among different taxa and (2) an (unsurprising) bias Published: August 28, 2015 towards prioritizing, for classification purposes, relatively minor traits of particular interest to Copyright: © 2015 Zhu et al.
    [Show full text]
  • Synechococcus Salsus Sp. Nov. (Cyanobacteria): a New Unicellular, Coccoid Species from Yuncheng Salt Lake, North China
    Bangladesh J. Plant Taxon. 24(2): 137–147, 2017 (December) © 2017 Bangladesh Association of Plant Taxonomists SYNECHOCOCCUS SALSUS SP. NOV. (CYANOBACTERIA): A NEW UNICELLULAR, COCCOID SPECIES FROM YUNCHENG SALT LAKE, NORTH CHINA 1 HONG-RUI LV, JIE WANG, JIA FENG, JUN-PING LV, QI LIU AND SHU-LIAN XIE School of Life Science, Shanxi University, Taiyuan 030006, China Keywords: New species; China; Synechococcus salsus; DNA barcodes; Taxonomy. Abstract A new species of the genus Synechococcus C. Nägeli was described from extreme environment (high salinity) of the Yuncheng salt lake, North China. Morphological characteristics observed by light microscopy (LM) and transmission electron microscopy (TEM) were described. DNA barcodes (16S rRNA+ITS-1, cpcBA-IGS) were used to evaluate its taxonomic status. This species was identified as Synechococcus salsus H. Lv et S. Xie. It is characterized by unicellular, without common mucilage, cells with several dispersed or solitary polyhedral bodies, widely coccoid, sometimes curved or sigmoid, rounded at the ends, thylakoids localized along cells walls. Molecular analyses further support its systematic position as an independent branch. The new species Synechococcus salsus is closely allied to S. elongatus, C. Nägeli, but differs from it by having shorter cell with length 1.0–1.5 times of width. Introduction Synechococcus C. Nägeli (Synechococcaceae, Cyanobacteria) was first discovered in 1849 and is a botanical form-genus comprising rod-shaped to coccoid cyanobacteria with the diameter of 0.6–2.1 µm that divide in one plane. It is a group of ultra-structural photosynthetic prokaryote and has the close genetic relationship with Prochlorococcus (Johnson and Sieburth, 1979), and both of them are the most abundant phytoplankton in the world’s oceans (Huang et al., 2012).
    [Show full text]
  • Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
    ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004).
    [Show full text]
  • Cooperative Interactions in Niche Communities
    fmicb-08-02099 October 23, 2017 Time: 15:56 # 1 ORIGINAL RESEARCH published: 25 October 2017 doi: 10.3389/fmicb.2017.02099 Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities Marc W. Van Goethem, Thulani P. Makhalanyane*, Don A. Cowan and Angel Valverde*† Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa Hypoliths, microbial assemblages found below translucent rocks, provide important ecosystem services in deserts. While several studies have assessed microbial diversity Edited by: Jesse G. Dillon, of hot desert hypoliths and whether these communities are metabolically active, the California State University, interactions among taxa remain unclear. Here, we assessed the structure, diversity, and Long Beach, United States co-occurrence patterns of hypolithic communities from the hyperarid Namib Desert Reviewed by: by comparing total (DNA) and potentially active (RNA) communities. The potentially Jamie S. Foster, University of Florida, United States active and total hypolithic communities differed in their composition and diversity, with Daniela Billi, significantly higher levels of Cyanobacteria and Alphaproteobacteria in potentially active Università degli Studi di Roma Tor Vergata, Italy hypoliths. Several phyla known to be abundant in total hypolithic communities were *Correspondence: metabolically inactive, indicating that some hypolithic taxa may be dormant or dead. Thulani P. Makhalanyane The potentially active hypolith network
    [Show full text]
  • A Novel Species of the Marine Cyanobacterium Acaryochloris With
    www.nature.com/scientificreports OPEN A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and Received: 12 February 2018 Accepted: 1 June 2018 lifestyle Published: xx xx xxxx Frédéric Partensky 1, Christophe Six1, Morgane Ratin1, Laurence Garczarek1, Daniel Vaulot1, Ian Probert2, Alexandra Calteau 3, Priscillia Gourvil2, Dominique Marie1, Théophile Grébert1, Christiane Bouchier 4, Sophie Le Panse2, Martin Gachenot2, Francisco Rodríguez5 & José L. Garrido6 All characterized members of the ubiquitous genus Acaryochloris share the unique property of containing large amounts of chlorophyll (Chl) d, a pigment exhibiting a red absorption maximum strongly shifted towards infrared compared to Chl a. Chl d is the major pigment in these organisms and is notably bound to antenna proteins structurally similar to those of Prochloron, Prochlorothrix and Prochlorococcus, the only three cyanobacteria known so far to contain mono- or divinyl-Chl a and b as major pigments and to lack phycobilisomes. Here, we describe RCC1774, a strain isolated from the foreshore near Roscof (France). It is phylogenetically related to members of the Acaryochloris genus but completely lacks Chl d. Instead, it possesses monovinyl-Chl a and b at a b/a molar ratio of 0.16, similar to that in Prochloron and Prochlorothrix. It difers from the latter by the presence of phycocyanin and a vestigial allophycocyanin energetically coupled to photosystems. Genome sequencing confrmed the presence of phycobiliprotein and Chl b synthesis genes. Based on its phylogeny, ultrastructural characteristics and unique pigment suite, we describe RCC1774 as a novel species that we name Acaryochloris thomasi. Its very unusual pigment content compared to other Acaryochloris spp.
    [Show full text]
  • First Insights Into the Impacts of Benthic Cyanobacterial Mats on Fish
    www.nature.com/scientificreports OPEN First insights into the impacts of benthic cyanobacterial mats on fsh herbivory functions on a nearshore coral reef Amanda K. Ford 1,2*, Petra M. Visser 3, Maria J. van Herk3, Evelien Jongepier 4 & Victor Bonito5 Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they infuence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantifed the coverage of various BCM-types and estimated the biomass of key herbivorous fsh functional groups. Using remote video observations, we compared fsh herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fsh (opportunistically) consuming BCMs. Samples of diferent BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fsh biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were signifcantly reduced on BCM-dominated substratum, and no fsh were unambiguously observed consuming BCMs. Seven diferent BCM-types were identifed, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacifc reefs. Tough scarcely mentioned in the literature a decade ago, benthic cyanobacterial mats (BCMs) are receiving increasing attention from researchers and managers as being a nuisance on tropical coral reefs worldwide1–4.
    [Show full text]
  • Structure of the Far-Red Light Utilizing Photosystem I of Acaryochloris Marina
    ARTICLE https://doi.org/10.1038/s41467-021-22502-8 OPEN Structure of the far-red light utilizing photosystem I of Acaryochloris marina ✉ Tasuku Hamaguchi 1,9, Keisuke Kawakami2,8,9 , Kyoko Shinzawa-Itoh3,9, Natsuko Inoue-Kashino 3, ✉ Shigeru Itoh 4, Kentaro Ifuku 5, Eiki Yamashita 6, Kou Maeda3, Koji Yonekura 1,7 & ✉ Yasuhiro Kashino 3 Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive 1234567890():,; photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d′. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis. 1 Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan. 2 Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan. 3 Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan. 4 Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan. 5 Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
    [Show full text]