Cooperative Interactions in Niche Communities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Natural Resource Condition Assessment for Stones River National Battlefield
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Natural Resource Condition Assessment for Stones River National Battlefield Natural Resource Report NPS/STRI/NRR—2016/1141 ON THIS PAGE Native warm season grass, located south of Stones River National Battlefield visitor center Photograph by: Jeremy Aber, MTSU Geospatial Research Center ON THE COVER Karst topography in the cedar forest at the “Slaughter Pen,” Stones River National Battlefield Photograph by: Jeremy Aber, MTSU Geospatial Research Center Natural Resource Condition Assessment for Stones River National Battlefield Natural Resource Report NPS/STRI/NRR—2016/1141 Henrique Momm Zada Law Siti Nur Hidayati Jeffrey Walck Kim Sadler Mark Abolins Lydia Simpson Jeremy Aber Geospatial Research Center Department of Geosciences Middle Tennessee State University Murfreesboro, Tennessee 37132 February 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. -
Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. -
50 Annual Meeting of the Phycological Society of America
50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W. -
Additional Analysis of Cyanobacterial Polyamines Distributions Of
Microb. Resour. Syst. Dec.32(2 ):1792016 ─ 186, 2016 Vol. 32, No. 2 Additional analysis of cyanobacterial polyamines ─ Distributions of spermidine, homospermidine, spermine, and thermospermine within the phylum Cyanobacteria ─ Koei Hamana1)*, Takemitsu Furuchi2), Hidenori Hayashi1) and Masaru Niitsu2) 1)Faculty of Engineering, Maebashi Institute of Technology 460-1 Kamisadori-machi, Maebashi, Gunma 371-0816, Japan 2)Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan To further catalogue the distribution of cyanobacterial cellular polyamines, we used HPLC and HPGC to newly analyze the acid-extracted polyamines from 14 cyanobacteria. The colony-forming Nostoc verrucosum (“Ashitsuki”) and Nostoc commune (“Ishikurage”), as well as Anabaena species (Nostocales), contained homospermidine. The thermo-halotolerant Spirulina subsalsa var. salina (Spirulinales), as well as freshwater Spirulina strains, contained spermidine. Putrescine, spermidine, and homospermidine were found in freshwater colony-forming Aphanothece sacrum (“Suizenji-nori”), whereas the halotolerant Aphanothece halophytica and Microcystis species (Chroococcales) contained spermidine alone. In addition to putrescine, spermidine, homospermidine and agmatine, thermospermine was found as a major polyamine in haloalkaliphilic Arthrospira platensis (“Spirulina”) (Oscillatoriales). In the Synechococcales, chlorophyll b-containing Prochlorococcus marina contained spermidine, and chlorophyll d-containing Acaryochloris marina contained -
Synechococcus Salsus Sp. Nov. (Cyanobacteria): a New Unicellular, Coccoid Species from Yuncheng Salt Lake, North China
Bangladesh J. Plant Taxon. 24(2): 137–147, 2017 (December) © 2017 Bangladesh Association of Plant Taxonomists SYNECHOCOCCUS SALSUS SP. NOV. (CYANOBACTERIA): A NEW UNICELLULAR, COCCOID SPECIES FROM YUNCHENG SALT LAKE, NORTH CHINA 1 HONG-RUI LV, JIE WANG, JIA FENG, JUN-PING LV, QI LIU AND SHU-LIAN XIE School of Life Science, Shanxi University, Taiyuan 030006, China Keywords: New species; China; Synechococcus salsus; DNA barcodes; Taxonomy. Abstract A new species of the genus Synechococcus C. Nägeli was described from extreme environment (high salinity) of the Yuncheng salt lake, North China. Morphological characteristics observed by light microscopy (LM) and transmission electron microscopy (TEM) were described. DNA barcodes (16S rRNA+ITS-1, cpcBA-IGS) were used to evaluate its taxonomic status. This species was identified as Synechococcus salsus H. Lv et S. Xie. It is characterized by unicellular, without common mucilage, cells with several dispersed or solitary polyhedral bodies, widely coccoid, sometimes curved or sigmoid, rounded at the ends, thylakoids localized along cells walls. Molecular analyses further support its systematic position as an independent branch. The new species Synechococcus salsus is closely allied to S. elongatus, C. Nägeli, but differs from it by having shorter cell with length 1.0–1.5 times of width. Introduction Synechococcus C. Nägeli (Synechococcaceae, Cyanobacteria) was first discovered in 1849 and is a botanical form-genus comprising rod-shaped to coccoid cyanobacteria with the diameter of 0.6–2.1 µm that divide in one plane. It is a group of ultra-structural photosynthetic prokaryote and has the close genetic relationship with Prochlorococcus (Johnson and Sieburth, 1979), and both of them are the most abundant phytoplankton in the world’s oceans (Huang et al., 2012). -
Cyanobacteria Evolution Insight from the Fossil Record
Free Radical Biology and Medicine 140 (2019) 206–223 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Cyanobacteria evolution: Insight from the fossil record T ∗ Catherine F. Demoulina, ,1, Yannick J. Laraa,1, Luc Corneta,b, Camille Françoisa, Denis Baurainb, Annick Wilmottec, Emmanuelle J. Javauxa a Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium b Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium c BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium ARTICLE INFO ABSTRACT Keywords: Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible Biosignatures for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably Cyanobacteria earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Evolution Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the Microfossils morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new Molecular clocks biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial Precambrian biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis. 1. Introduction eukaryote [8,9], and subsequent higher-order endosymbiotic events [10]. -
Dolichospermum Heterosporum (Nygaard) P
Freshwater Cyanobacteria Identification Barry H. Rosen, Ph. D. Biologist & SE Region Tribal Liaison US Geological Survey/Office of the SE Regional Director Morphology 1: Chroococcales & Synechococcales cells round, oval, single cells or spheres, etc. colonies how are they arranged: mucilage? and its touching, spaced out appearance cells round, oval, spheres, etc. Geminocystis Halothece or Cyanothece or Cyanobacterium sp. Bar is 10 µm in length cells round, oval, spheres, plus mucilage Gloeothece interspersa. Bar is 10 µm in length. cells round, oval, spheres, plus mucilage Chroococcus cells round, oval, spheres, plus mucilage Merismopedia cells round, oval, spheres, plus mucilage, plus colonies-loose vs. tightly packed Aphanothece cells round, oval, spheres, plus mucilage, plus colonies-loose vs. tightly packed Aphanocapsa Microcystis- colony Microcystis aeruginosa- colony variation Microcystis aeruginosa- colony variation Microcystis aeruginosa- close-up Pseudanabaena with Microcystis Microcystis wesenbergii Woronichinia naegeliana Gomphosphaeria Gomphosphaeria Snowella Morphology 2: Simple Filaments (no akinetes or heterocytes) Oscillatoriales, Pseudanabaenales, Synechococcales, Spirulinales cell length sheath or not straight or coiled single or bundles Oscillatoria: cells short; sheath not apparent Oscillatoria- art Lyngbya: with sheath, benthic and no aerotopes Limnoraphis (reclassified, i.e., Lyngbya in 2013: planktonic and aerotopes) Planktothrix Limnothrix Komvophoron Planktolyngbya P. contorta P. limnetica Pseudanabaena Pseudanabaena -
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B. -
Adaptations of Cyanobacterium Nostoc Commune to Environ- Mental Stress: Comparison of Morphological and Physiological Markers
CZECH POLAR REPORTS 8 (1): 84-93, 2018 Adaptations of cyanobacterium Nostoc commune to environ- mental stress: Comparison of morphological and physiological markers between European and Antarctic populations after re- hydration Dajana Ručová1, Michal Goga1, Marek Matik2, Martin Bačkor1* 1Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of Pavol Jozef Šafárik, Mánesova 23, 041 67 Košice, Slovakia 2Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia Abstract Availability of water may influence activities of all living organisms, including cyano- bacterial communities. Filamentous cyanobacterium Nostoc commune is well adapted to wide spectrum of ecosystems. For this reason, N. commune had to develop diverse pro- tection strategies due to exposition to regular rewetting and drying processes. Few studies have been conducted on activities, by which cyanobacteria are trying to avoid water deficit. Therefore, the present study using physiological and morphological param- eters is focused on comparison between European and Antarctic ecotypes of N. commune during rewetting. Gradual increase of FV/FM ratios, as the markers of active PS II, demonstrated the recovery processes of N. commune colonies from Europe as well as from Antarctica after time dependent rehydration. During the initial hours of rewetting, there was lower content of soluble proteins in colonies from Antarctica in comparison to those from Europe. Total content of nitrogen was higher in European ecotypes of N. commune. Significantly higher frequency of occurrence of heterocysts in Antarctic ecotypes was observed. The heterocyst cells were significantly longer in Antarctic ecotypes rather than European ecotypes of N. commune. Key words: Antarctica, soluble proteins, cyanobacteria, chlorophyll fluorescence, heterocysts, nitrogen, James Ross Island DOI: 10.5817/CPR2018-1-6 ——— Received December 19, 2017, accepted April 4, 2018. -
DOMAIN Bacteria PHYLUM Cyanobacteria
DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub