DOMAIN Bacteria PHYLUM Cyanobacteria

Total Page:16

File Type:pdf, Size:1020Kb

DOMAIN Bacteria PHYLUM Cyanobacteria DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Widespread Genera Halomicronema Halospirulina Aphanocapsa Arthrospira Anabaena Fischerella Prochlorococcus Leptobasis Aphanothece Glaucospira Aphanizomenon Stigonema Lichen Chroococcus Lyngbya Calothrix Palaeopleurocapsa Gloeocapsa Oscillatoria Cylindrospermum Phormidiochaete Merismopedia Phormidium Nodularia Physactis Microcystis Planktothrix Nostoc Planktotricoides Synechoccus Spirulina Polychlamydum Woronichinia Pulvinaria Strong Bloom-Forming Genera Schmidlea Sphaerocavum Cyanobium Planktothrix Anabaena Triochocoleus Aphanizomenon Nodularia Cylindrospermopsis S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica CLASS Chroobacteria ORDER Chroococcales Chroococcales O Chamaesiphonaceae F G Chamaecalyx Chamaesiphon Clastidium Cyanophanon Geitleribactron Stichosiphon S Chamaesiphon confervicolus Clastidium setigerum Cyanophanon minus Chamaesiphon fuscus Cyanophanon mirabile Chamaesiphon incrustans Chamaesiphon polonicus S-S Chroococcales O Chroococcaceae F G Asterocapsa Chroococcus Cyanokybus Cyanosarcina Cyanostylon Gloeocapsopsis Nephrococcus Pseudocapsa S Chroococcus aphanacapsoides Cyanostylon plancticum Gloeocapsopsis crepidinum Chroococcus cohaerens Chroococcus dispersus Chroococcus distans Chroococcus giganteus Chroococcus limneticus Chroococcus microscopicus Chroococcus minimus Chroococcus minor Chroococcus minutus Chroococcus pallidus Chroococcus planctonicus Chroococcus subnudus Chroococcus tenax Chroococcus turgidus Chroococcus turicensis S-S Croococcus turgidus var. maximus Chroococcales O Dermocarpellaceae F G Cyanocystis Dermocarpella Stanieria S Dermocarpella prasina Stanieria sphaerica Stanieria sublitoralis S-S Chroococcales O Entophysalidaceae F S-F Entophysalidoideae Siphononematoideae G Cyanoarbor Chlorogloea Entophysalis Lithocapsa Paracapsa Siphononema S Chlorogloea microcystoides Entophysalis deusta Siphononema polonicum Entophysalis granulosa S-S Chroococcales O Gloeobacteraceae F Gloeobacter G S Gloeobacter violaceus S-S Chroococcales O Hydrococcaceae F S-F Hydrococcoideae G Cyanodermatium EpilithiaHermathonema Nematoradaisia Hydrococcus Myxohyella Onkonema Placoma Tryponema S Hydrococcus cesatii Hydrococcus rivularis S-S Chroococcales O Hyellaceae F S-F Hyelloideae Pascherinematoideae Podocapsoideae Solentioideae G CyanodermaGeitleriella Hyella Pleurocapsa Radaisia Pascherinema Cyanosaccus Podocapsa Cyanosaccus Podocapsa S Hyella balana Pleurocapsa fuliginosa Hyella caespitosa S-S O Chroococcales F Merismopediaceae S-F Gomphosphaerioideae Merismopedioideae Coelosphaeriopsis Gomphosphaeria Snowella Coccopedia Mantellum Microcrocis Pilgeria G Synechocystis Coelomoron Coelosphaerium Siphonosphaera Woronichinia Aphanocapsa Cyanotetras Merismopedia Pannus S Coelomoron Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Cyanotetras Merismopedia Microcrocis Pannus Synechocystis pusillum aurugineum aponina arachnoidea botrys delicatissima fusca angularis dietelli leloupii aquatilis Coelomoron Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Merismopedia Microcrocis Pannus Synechocystis tripicale dubium natans atomus compacta elachista arctica irregularis microcysti- consortia Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Merismopedia Microcrocis formis Synechocystis kuetzingianum salina fennica delicatula endophytica confoluta obvoluta Pannus endobiotica Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Merismopedia planus Synechocystis linicolum semen-vitis lacustris elorantae fonticola elegans Pannus pevalekii Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Merismopedia spumosus Synechocystis minusittimum virieuxii litoralis fremyl grevillei forrophila salina Coelosphaerium Gomphosphaeria Snowella Woronichinia Aphanocapsa Merismopedia punctiferum wichurae septentrionalis fusca holsatica glauca Woronichinia Aphanocapsa Merismopedia karelica incerta haumanii Woronichinia Aphanocapsa Merismopedia naegeliana koordersii insignis Woronichinia Aphanocapsa Merismopedia robusta litoralis marssonii Woronichinia Aphanocapsa Merismopedia ruzickae marina minima Woronichinia Aphanocapsa Merismopedia tenera muscicola punctata Aphanocapsa Merismopedia parasitica smithii Aphanocapsa Merismopedia planctonica tenuissima Aphanocapsa Merismopedia pulchra thermalis Aphanocapsa Merismopedia reinboldii trolleri Aphanocapsa Merismopedia rivularis warmingiana Aphanocapsa roeseana Aphanocapsa salina S-S Aphanocapsa elachista Chroococcales O Microcystaceae F G Chondrocystis Eucapsis Gloeocapsa Microcystis S Chondrocystis dermochroa Eucapsis alpina Gleoecapsa atrata Microcystis aeruginosa Eucapsis minor Gleoecapsa caldariorum Microcystis botrys Eucapsis minuta Gleoecapsa compacta Microcystis firma Eucapsis parallelepipedon Gleoecapsa granosa Microcystis flos-aquae Eucapsis starmachii Gleoecapsa mellea Microcystis ichthyoblabe Gleoecapsa montana Microcystis marginata Gleoecapsa punctata Microcystis natans Gleoecapsa rupestris Microcystis novacekii Gleoecapsa sanguinea Microcystis pulverea Microcystis robusta Microcystis smithii Microcystis stagnalis Microcystis viridis Microcystis wesenbergii Microcystis pulverea S-S Chroococcales O Xenococcaceae F G Chroococcidiopsis Chroococcidium Chroococcopsis Myxosarcina Xenococcus Xenotholos S Xenotholos kerneri S-S O Chroococcales F Synechococcacaea S-F Aphanothecoideae Synechococcoideae: See Next Page Cyanobacterium Cyanocatena Cyanogranis Epigloeosphaera Hormothece Lithococcus Radiocystis G Aphanothece Cyanobium Cyanodictyon Cyanonephron Cyanothece Gloeothece Lemmermanniella Lithomyxa S A. bachmannii Cyanobium Cyanocatena Cyanogranis Cyanonephron Cyanothece Gloeothece L. flexa Radiocystis A. caldariorum diatomicola planctonica basifixa styloides aeruginosa confluens L. pallida aphanothecoidea A. castagnei Cyanobium Cyanogranis Cyanothece Gloeothece L. parva Radiocystis A. clathrata parvum ferruginea major linearis elongata A conglom- Cyanobium Gloeothece Radiocystis erata palea deminata plancticum Cyanodictyon A. Desika- Gloeothece filiforme charyi rupestris Cyanodictyon A. elabens Gloeothece iac A. endophytica subtilis Cyanodictyon A. floccosa Gloeothece imperfectum A. gardneri tepidariorum Cyanodictyon A. gelatinosa planctonicum A. heterospora Cyanodictyon A. minutissima reticulatum Epigloeosphaera A. naegelii Cyanodictyon glebulenta A. nostocopsis tubiforme A. pallida A. piscinalis A. prasina A. pulverulenta A. saxicola A. smithii A. stagnina Cyanobacterium cedrorum O Chroococcales F Synechococcacaea S-F Aphanothecoideae: See Previous Page Synechococcoideae Bacularia Dzensia Myxobaktron Pseudoconbyrsa Rhabdogloea Synechococcus G Wolskyella Alternantia Cyanothamnos Johannesbaptistia Palikiella Rhabdoderma Rhodostichus Tubiella S Cyanothamnos Johannesbaptistia Rhabdoderma Rhabdogloea Synechococcus plancticus pellucida gorskii ellipsoidea bigranulatus Rhabdoderma Rhabdogloea Synechococcus lineare linearis capitatus Rhabdogloea Synechococcus minuta carcerarius Rhabdogloea Synechococcus smithii crassus Synechococcus elongatus Synechococcus endogloeicus Synechococcus epigloeicus Synechococcus nidulans Synechococcus parvulus Synechococcus salinarum Synechococcus sigmoideus CLASS Chroobacteria ORDER Oscillatoriales Oscillatoriales O Ammatoideaeceae
Recommended publications
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Algae (Order Chroococcales) R
    BACTEROLOGICAL REVIEWS, June 1971, p. 171-205 Vol. 35, No. 2 Copyright © 1971 American Society for Microbiology Printed in U.S.A. Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales) R. Y. STANIER, R. KUNISAWA, M. MANDEL, AND G. COHEN-BAZIRE Department of Bacteriology and Immunology, University of California, Berkeley, California 94720, and The University ofTexas, M. D. Anderson Hospital and Tumor Institute, Houston, Texas 77025 INTRODUCTION ............................................................ 171 MATERIALS AND METHODS ............................................... 173 Sources of Strains Examined .................................................. 173 Media and Conditions of Cultivation ........................................... 173 Enrichment, Isolation, and Purification of Unicellular Blue-Green Algae 176 Measurement of Absorption Spectra ............................................ 176 Determination of Fatty-Acid Composition ....................................... 176 Extraction of DNA .......................................................... 176 Determination of Mean DNA Base Composition ................................. 177 ASSIGNMENT OF STRAINS TO TYPOLOGICAL GROUPS 177 DNA BASE COMPOSITION ................................................. 181 PHENOTYPIC PROPERTIES ................................................ 184 Motility................................................................... 184 Growth in Darkness and Utilization of Organic Compounds ........................ 184 Nitrogen Fixation
    [Show full text]
  • Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
    ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004).
    [Show full text]
  • Cooperative Interactions in Niche Communities
    fmicb-08-02099 October 23, 2017 Time: 15:56 # 1 ORIGINAL RESEARCH published: 25 October 2017 doi: 10.3389/fmicb.2017.02099 Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities Marc W. Van Goethem, Thulani P. Makhalanyane*, Don A. Cowan and Angel Valverde*† Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa Hypoliths, microbial assemblages found below translucent rocks, provide important ecosystem services in deserts. While several studies have assessed microbial diversity Edited by: Jesse G. Dillon, of hot desert hypoliths and whether these communities are metabolically active, the California State University, interactions among taxa remain unclear. Here, we assessed the structure, diversity, and Long Beach, United States co-occurrence patterns of hypolithic communities from the hyperarid Namib Desert Reviewed by: by comparing total (DNA) and potentially active (RNA) communities. The potentially Jamie S. Foster, University of Florida, United States active and total hypolithic communities differed in their composition and diversity, with Daniela Billi, significantly higher levels of Cyanobacteria and Alphaproteobacteria in potentially active Università degli Studi di Roma Tor Vergata, Italy hypoliths. Several phyla known to be abundant in total hypolithic communities were *Correspondence: metabolically inactive, indicating that some hypolithic taxa may be dormant or dead. Thulani P. Makhalanyane The potentially active hypolith network
    [Show full text]
  • Family I. Chroococcaceae, Part 2 Francis Drouet
    Butler University Botanical Studies Volume 12 Article 8 Family I. Chroococcaceae, part 2 Francis Drouet William A. Daily Follow this and additional works at: http://digitalcommons.butler.edu/botanical The utleB r University Botanical Studies journal was published by the Botany Department of Butler University, Indianapolis, Indiana, from 1929 to 1964. The cs ientific ourj nal featured original papers primarily on plant ecology, taxonomy, and microbiology. Recommended Citation Drouet, Francis and Daily, William A. (1956) "Family I. Chroococcaceae, part 2," Butler University Botanical Studies: Vol. 12, Article 8. Available at: http://digitalcommons.butler.edu/botanical/vol12/iss1/8 This Article is brought to you for free and open access by Digital Commons @ Butler University. It has been accepted for inclusion in Butler University Botanical Studies by an authorized administrator of Digital Commons @ Butler University. For more information, please contact [email protected]. Butler University Botanical Studies (1929-1964) Edited by J. E. Potzger The Butler University Botanical Studies journal was published by the Botany Department of Butler University, Indianapolis, Indiana, from 1929 to 1964. The scientific journal featured original papers primarily on plant ecology, taxonomy, and microbiology. The papers contain valuable historical studies, especially floristic surveys that document Indiana’s vegetation in past decades. Authors were Butler faculty, current and former master’s degree students and undergraduates, and other Indiana botanists. The journal was started by Stanley Cain, noted conservation biologist, and edited through most of its years of production by Ray C. Friesner, Butler’s first botanist and founder of the department in 1919. The journal was distributed to learned societies and libraries through exchange.
    [Show full text]
  • Cyanobacteria Evolution Insight from the Fossil Record
    Free Radical Biology and Medicine 140 (2019) 206–223 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Cyanobacteria evolution: Insight from the fossil record T ∗ Catherine F. Demoulina, ,1, Yannick J. Laraa,1, Luc Corneta,b, Camille Françoisa, Denis Baurainb, Annick Wilmottec, Emmanuelle J. Javauxa a Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium b Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium c BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium ARTICLE INFO ABSTRACT Keywords: Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible Biosignatures for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably Cyanobacteria earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Evolution Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the Microfossils morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new Molecular clocks biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial Precambrian biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis. 1. Introduction eukaryote [8,9], and subsequent higher-order endosymbiotic events [10].
    [Show full text]
  • Identification and Characterization of Novel Filament-Forming Proteins In
    www.nature.com/scientificreports OPEN Identifcation and characterization of novel flament-forming proteins in cyanobacteria Benjamin L. Springstein 1,4*, Christian Woehle1,5, Julia Weissenbach1,6, Andreas O. Helbig2, Tal Dagan 1 & Karina Stucken3* Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel flament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative flament-forming proteins, we observed a higher proportion of CCRPs in flamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identifed nine protein families with putative intermediate flament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed flaments in vivo in several organisms. Additionally, we identifed a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into flaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form flaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into flaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic flament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity. Species in the phylum Cyanobacteria present a wide morphological diversity, ranging from unicellular to mul- ticellular organisms.
    [Show full text]
  • Isolation and Preliminary Characterization of Cyanobacteria Strains from Freshwaters of Greece
    Open Life Sci. 2015; 10: 52–60 Research Article Open Access Spyros Gkelis*, Pablo Fernández Tussy, Nikos Zaoutsos Isolation and preliminary characterization of cyanobacteria strains from freshwaters of Greece Abstract: Cyanobacterial harmful algal blooms (or 1 Introduction CyanoHABs) represent one of the most conspicuous waterborne microbial hazards. The characterization of Cyanobacteria are photosynthetic, prokaryotic organisms the bloom communities remains problematic because which occur primarily in freshwater and saline the cyanobacterial taxonomy of certain genera has not environments, but also in terrestrial ecosystems. Their yet been resolved. In this study, 29 planktic and benthic presence in lakes with high nutrient levels can lead to a cyanobacterial strains were isolated from freshwaters mass increase in cyanobacterial cell numbers, with the located in Greece. The strains were assigned to the genera formation of blooms, which results in a depreciation of Chroococcus, Microcystis, Synechococcus, Jaaginema, water quality [1]. Cyanobacterial harmful algal blooms Limnothrix, Pseudanabaena, Anabaena, and Calothrix (or CyanoHABs) represent one of the most conspicuous and screened for the production of the cyanotoxins waterborne microbial hazards to human and agricultural microcystins (MCs), cylindrospermopsins (CYNs), and water supplies, fishery production, and freshwater and saxitoxins (STXs) using molecular (PCR amplification of marine ecosystems [2]. This hazard results from the seven genes implicated in cyanotoxin biosynthesis)
    [Show full text]
  • Biodiversity and Temporal Distribution of Chroococcales (Cyanoprokaryota) of an Arid Mangrove on the East Coast of Baja California Sur, Mexico
    Fottea 11(1): 235–244, 2011 235 Biodiversity and temporal distribution of Chroococcales (Cyanoprokaryota) of an arid mangrove on the east coast of Baja California Sur, Mexico Hilda LEÓN –TEJERA 1,, Claudia J. PÉREZ –ES T RADA 2, Gustavo MON T EJANO 1 & Elisa SERVIERE –ZARAGOZA 2 1Department of Biology, Faculty of Sciences, Universidad Nacional Autónoma de Mexico, Apartado Postal 04360, Coyoacán, Mexico, D.F. 04510, Mexico. [email protected] 2Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico Abstract: Arid mangroves constitute a particular biotope, with very extreme variations in ecological conditions, mainly temperature and salinity, condition that demand specific adaptations to successfully inhabit this ecosystem. Cyanoprokaryotes have not been well studied in Mexican coasts and this is the first study that contributes to the knowledge of the biodiversity of this group in an arid mangrove in Zacatecas estuary, Baja California Sur, Mexico. Samples of Avicennia germinans pneumatophores from Zacatecas estuary were collected between May 2005 and May 2006. The identification of the most representative Chroococcales produced 10 morphotypes, described mor- phologically and digitally registered for the first time for Mexico. We report species of Aphanocapsa, Chroococ- cus, Hydrococcus, Chamaecalyx, Dermocarpella and Xenococcus. Some taxa have been recorded in brackish or even marine environments from other regions, evidencing the wide geographical distribution and ecological adapt- ability of these organisms, but some others are probably new to science. Some species have a specific seasonal and vertical distribution on the pneumatophore but other have a more ample distribution.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis
    G C A T T A C G G C A T genes Article Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014 Pia Marter 1,†, Sixing Huang 1,†, Henner Brinkmann 1, Silke Pradella 1, Michael Jarek 2, Manfred Rohde 2, Boyke Bunk 1 and Jörn Petersen 1,* 1 Leibniz-Institut DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, 38124 Braunschweig, Germany; [email protected] (P.M.); [email protected] (S.H.); [email protected] (H.B.); [email protected] (S.P.); [email protected] (B.B.) 2 Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; [email protected] (M.J.); [email protected] (M.R.) * Correspondence: [email protected]; Tel.: +49-531-2616-209; Fax: +49-531-2616-418 † These authors contributed equally to this work. Abstract: Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than Citation: Marter, P.; Huang, S.; 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Brinkmann, H.; Pradella, S.; Jarek, M.; Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three Rohde, M.; Bunk, B.; Petersen, J. slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for Filling the Gaps in the Cyanobacterial metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity Tree of Life—Metagenome Analysis of associated heterotrophs.
    [Show full text]
  • Predictive Modeling of Microcystin Concentrations in Drinking Water Treatment Systems Of
    Predictive Modeling of Microcystin Concentrations in Drinking Water Treatment Systems of Ohio and their Potential Health Effects Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By: Traven A. Wood, B.S. Graduate Program in Public Health The Ohio State University 2019 Thesis Committee: Mark H. Weir (Adviser) Jiyoung Lee Allison MacKay Copyright by Traven Aldin Wood 2019 Abstract Cyanobacteria present significant public health and engineering challenges due to their expansive growth and potential synthesis of microcystins in surface waters that are used as a drinking water source. Eutrophication of surface waters coupled with favorable climatic conditions can create ideal growth environments for these organisms to develop what is known as a cyanobacterial harmful algal bloom (cHAB). Development of methods to predict the presence and impact of microcystins in drinking water treatment systems is a complex process due to system uncertainties. This research developed two predictive models, first to estimate microcystin concentrations at a water treatment intake, second, to estimate the risks of finished water detections after treatment and resultant health effects to consumers. The first model uses qPCR data to adjust phycocyanin measurements to improve predictive linear regression relationships. Cyanobacterial 16S rRNA and mcy genes provide a quantitative means of measuring and detecting potentially toxic genera/speciess of a cHAB. Phycocyanin is a preferred predictive tool because it can be measured in real-time, but the drawback is that it cannot distinguish between toxic genera/speciess of a bloom. Therefore, it was hypothesized that genus specific ratios using qPCR data could be used to adjust phycocyanin measurements, making them more specific to the proportion of the bloom that is producing toxin.
    [Show full text]