Rapid Assessment of Phytoplankton Assemblages Using Next Generation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DOMAIN Bacteria PHYLUM Cyanobacteria
DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub -
Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis
G C A T T A C G G C A T genes Article Filling the Gaps in the Cyanobacterial Tree of Life—Metagenome Analysis of Stigonema ocellatum DSM 106950, Chlorogloea purpurea SAG 13.99 and Gomphosphaeria aponina DSM 107014 Pia Marter 1,†, Sixing Huang 1,†, Henner Brinkmann 1, Silke Pradella 1, Michael Jarek 2, Manfred Rohde 2, Boyke Bunk 1 and Jörn Petersen 1,* 1 Leibniz-Institut DSMZ—Deutsche Sammlung von Mikroorganismen und Zellkulturen, 38124 Braunschweig, Germany; [email protected] (P.M.); [email protected] (S.H.); [email protected] (H.B.); [email protected] (S.P.); [email protected] (B.B.) 2 Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; [email protected] (M.J.); [email protected] (M.R.) * Correspondence: [email protected]; Tel.: +49-531-2616-209; Fax: +49-531-2616-418 † These authors contributed equally to this work. Abstract: Cyanobacteria represent one of the most important and diverse lineages of prokaryotes with an unparalleled morphological diversity ranging from unicellular cocci and characteristic colony-formers to multicellular filamentous strains with different cell types. Sequencing of more than Citation: Marter, P.; Huang, S.; 1200 available reference genomes was mainly driven by their ecological relevance (Prochlorococcus, Brinkmann, H.; Pradella, S.; Jarek, M.; Synechococcus), toxicity (Microcystis) and the availability of axenic strains. In the current study three Rohde, M.; Bunk, B.; Petersen, J. slowly growing non-axenic cyanobacteria with a distant phylogenetic positioning were selected for Filling the Gaps in the Cyanobacterial metagenome sequencing in order to (i) investigate their genomes and to (ii) uncover the diversity Tree of Life—Metagenome Analysis of associated heterotrophs. -
(Cyanobacterial Genera) 2014, Using a Polyphasic Approach
Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level. -
Our N Note on Taxonomy of Chlorogl Et Pandey with Soil Analysis, West
HalderOur Nature/ Our Nature│December(2016), 2016│14 14 (1): 92(1):-9892-98 ISSN: 1991-2951 (Print) ISSN: 2091-2781 (Online) Our Nature Journal homepage: http://nepjol.info/index.php/ON Note on taxonomy of Chlorogloeopsis fritschii (Mitra) Mitra et Pandey with soil analysis, collected from a rice field in West Bengal, India Nilu Halder Department of Botany, Raja Peary Mohan College, Uttarpara-712258, Hooghly, W.B., India E- mail: [email protected] Abstract While studying on paddy field blue green algae, author for the first time recorded a blue green algal species Chlorogloeopsis fritschii (Mitra) Mitra et Pandey from rice field soil in summer during 2013 in Hooghly, West Bengal, India. In the present paper, taxonomical description with microphotographs of the species has been provided. In addition to that, soil which was collected from the algal occurrence site has been analyzed. The different physico-chemical parameters of soil were as followed: pH: 7.1; EC: 0.142 dSm-1; OC: 6.6 mgkg-1; Ca2+: 4.6 cmol+kg-1; Na+: 0.71 cmol+kg-1; K+: 0.15 cmol+kg-1; CEC: 12.6 cmol+kg- 1; WHC: 45%. Soil textures were as: sand: 36.2%, slit: 28.1% and clay: 35.7%. This study of soil showed its nature and present nutrient content. As the alga contains heterocyst and can fix atmospheric nitrogen to soil so, it can apply in rice fields as biofertilizer to enhance the yield of rice and increase of soil fertility. Key words: Green algae, Hooghly, Physico-chemical parameters, Rice field DOI: http://dx.doi.org/10.3126/on.v14i1.16445 Manuscript details: Received: 23.01.2016 / Accepted: 18.04.2016 Citation: Halder, N. -
A Taxonomic and Ecological Study of Periphytic Cyanobacteria in Kaituna River and Its Tributaries, Banks Peninsula, New Zealand
A Taxonomic and Ecological Study of Periphytic Cyanobacteria in Kaituna River and Its Tributaries, Banks Peninsula, New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Canterbury by Faradina Merican bt. Mohd. Sidik Merican School of Biological Sciences University of Canterbury 2013 For Eiman and Dania 2 Acknowledgements First and foremost, my utmost gratitude to my supervisor, Dr. Paul Broady for his valuable guidance, scholarly inputs, consistent encouragement and unconditional support throughout my research work. Paul is a person with an amicable and positive disposition, whose sincerity I will never forget. He is an excellent role model to me as a junior member of academia. Special thanks to Dr. Phil Novis, Landcare Research Lincoln for introducing me to molecular genetics, providing practical advice and commenting on the manuscript. Phil consistently extended his research expertise throughout my work and I owe a lot to him for this achievement. Helpful advice, technical assistance and support were provided by, Reijel Gardiner, John O’Brien, Craig Galilee, Graeme Young, Chriss and Vicki Parr, Roger Lough, Adrian Meredith and Dan Clark. I thank all of them for their contributions. Thanks are extended to Kristy Hogsden and Hamish Greig who have been very kind to extend their help and support in statistical data analysis. To my friends Yatt, Ain, Kak Zita, Ummu, Shaz, Yanti, Salwa, Lan, Mizi, Niza, Abg. Don, Kak Su, K Mas, Abishek and Pavla, a heartfelt thanks. To my kiwi best friend and research companion, Francine Harland, thank you for everything. -
Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management
Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management Edited by Ingrid Chorus and Jamie Bartram E & FN Spon An imprint of Routledge London and New York First published 1999 by E & FN Spon, an imprint of Routledge 11 New Fetter Lane, London EC4P 4EE © 1999 WHO Printed and bound in Great Britain by St Edmundsbury Press, Bury St Edmunds, Suffolk All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book has been requested. ISBN 0-419-23930-8 Also available from E & FN Spon Agricultural Pollution M. Redman Determination of Organic Compounds in Natural and Treated Waters T.R. Crompton Ecological Effects of Waste Water, 2nd edition Applied limnology and pollutant effects E.B. Welch Integrated Approaches to Water Pollution Problems Edited by J. Bau, J.D. Henriques, J. de Oliviera Raposo and J.P. Lobo Ferreira International River Water Quality Pollution and restoration Edited by G.