Isolation and Preliminary Characterization of Cyanobacteria Strains from Freshwaters of Greece

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Preliminary Characterization of Cyanobacteria Strains from Freshwaters of Greece Open Life Sci. 2015; 10: 52–60 Research Article Open Access Spyros Gkelis*, Pablo Fernández Tussy, Nikos Zaoutsos Isolation and preliminary characterization of cyanobacteria strains from freshwaters of Greece Abstract: Cyanobacterial harmful algal blooms (or 1 Introduction CyanoHABs) represent one of the most conspicuous waterborne microbial hazards. The characterization of Cyanobacteria are photosynthetic, prokaryotic organisms the bloom communities remains problematic because which occur primarily in freshwater and saline the cyanobacterial taxonomy of certain genera has not environments, but also in terrestrial ecosystems. Their yet been resolved. In this study, 29 planktic and benthic presence in lakes with high nutrient levels can lead to a cyanobacterial strains were isolated from freshwaters mass increase in cyanobacterial cell numbers, with the located in Greece. The strains were assigned to the genera formation of blooms, which results in a depreciation of Chroococcus, Microcystis, Synechococcus, Jaaginema, water quality [1]. Cyanobacterial harmful algal blooms Limnothrix, Pseudanabaena, Anabaena, and Calothrix (or CyanoHABs) represent one of the most conspicuous and screened for the production of the cyanotoxins waterborne microbial hazards to human and agricultural microcystins (MCs), cylindrospermopsins (CYNs), and water supplies, fishery production, and freshwater and saxitoxins (STXs) using molecular (PCR amplification of marine ecosystems [2]. This hazard results from the seven genes implicated in cyanotoxin biosynthesis) and production of cyanotoxins, harmful secondary metabolites, immunological (ELISA) methods. This study presents, which can have deleterious effects within reservoirs and in for the first time, a cyanobacteria culture collection downstream receiving water systems during releases [3]. from Greece, thus providing missing study material for In Greece, common bloom-forming cyanobacteria the understanding of bloom formation and cyanotoxin mainly belong to the genera Microcystis and Anabaena, production in the Mediterranean and for the polyphasic followed by Cylindrospermopsis and Aphanizomenon [1, characterization of important components of the 4, 5]. In addition to the bloom-forming cyanobacteria, phytoplankton. The combined use of molecular and a wide range of less abundant and lesser-known immunochemical methods allowed the identification of cyanobacteria, such as, filamentous (e.g. Pseudanabaena) MC producing strains, but further data are needed for CYN- or colonial (e.g. Aphanocapsa, Chroococcus, Cyanodictyon) and STX-producing cyanobacteria. The high percentage nanoplanktonic (2-20 μm) species [4] and Synechococcus- of MC-producing Microcystis strains in the urban Lakes type picocyanobacteria (<2 μm) [6] are present in blooms Kastoria and Pamvotis, frequently used for agriculture that rarely become dominant, but can represent an irrigation, fishing and recreation, highlights the potential important part of the total cyanobacterial biomass. risk for human health. Occasionally, benthic and/or periphytic cyanobacteria can be observed in phytoplankton. Keywords: Microcystis, Anabaena, Limnothrix, Calothrix, The characterization of the bloom communities’ cyanotoxins, molecular detection, lakes, ELISA structure remains problematic because the cyanobacterial taxonomy of certain genera has not yet been resolved [7]. Today, cyanobacterial diversity is examined using a DOI 10.1515/biol-2015-0006 polyphasic approach by assessing morphological and Received January 28, 2014; accepted August 21, 2014 molecular data (e.g. 8, 9), often combined with toxicological characters [10, 11]. The traditional cyanobacterial *Corresponding author: Spyros Gkelis: Department of Botany, classification [12-15] and the bacteriological classification School of Biology, Aristotle University of Thessaloniki, GR-541 24 [16] are based on morphological and genotypic (partial Thessaloniki, Macedonia, Greece, E-mail: [email protected] 16S rRNA gene sequences) data [9]. The comparison of Pablo Fernández Tussy, Nikos Zaoutsos: Department of Botany, morphological and genetic data is sometimes hindered School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Macedonia, Greece by the lack of cultures of several cyanobacterial © 2015 Spyros Gkelis et al., licensee De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License. Isolation and characterization of cyanobacteria strains 53 morphospecies and inadequate morphological data of Thessaloniki (AUTH) microalgae collection (Department of sequenced strains [8]. Furthermore, in order to evaluate the Botany, School of Biology) and can be accessed in http:// phenotypic plasticity within defined taxa, the variability cyanobacteria.myspecies.info/. observed in cultures has to be compared to the range in natural variation [17]. 2.3 Light microscopy The taxonomy of some of the potentially toxic cyanobacteria remains challenging [18], especially due to A Zeiss Axio imager z2 (Carl Zeiss, Germany) microscope the co-occurrence of several different morphotypes [7]. using bright field and differential interference contrast In Greece, cyanobacteria diversity and toxicity is mainly (EC Plan-Neofluar 5x/0,16,EC Plan-Neofluar 10x/0.3, Plan- known by field (e.g. [4, 5, 19]) and culture-independent Apochromat 20x/0.8, Plan-Neofluar 40x/0.75 DIC, Plan- 16S rRNA gene studies (e.g. [7]); only one publication [18] Neofluar 63x/1.25 Oil DIC, Plan-Neofluar 100x/1.30 Oil DIC) refers to Limnothrix cyanobacteria isolates. The objective was used. Microphotographs were taken with an Axio Cam of this paper is to isolate and characterize cyanobacteria MRc5 digital camera (Carl Zeiss, Germany). from freshwaters of Greece, with respect to their ability to produce cyanotoxins. 2.4 Identification The strains were identified to the species or genus level 2 Experimental Procedures according to Anagnostidis & Komárek [12, 13), Komárek & Anagnostidis (14, 15, 23, 24), Castenholz [16], taking into 2.1 Growth media and growth conditions consideration current taxonomic status [17]. Solid growth medium: agar plates 53 and 90 mm in 2.5 DNA extraction and PCR analyses diameter containing BG-11 media [20] with or without (for the nitrogen-fixing strains) nitrogen, 1.2% w/v [21] agar In order to identify toxic strains, different primer pairs, (Sigma-Aldrich, Germany). Liquid growth medium: BG-11 previously described in the literature, were used to with or without nitrogen in 100, 250 and 500 mL culture detect different gene targets known to be involved in the flasks. biosynthesis of either MC, CYN or STX. DNA was extracted Cultures were grown as liquid batch cultures at 20±2oC using the protocol described in Atashpaz et al. [25] for Gram or 25±1oC (for Microcystis) at a photosynthetic photon negative bacteria. PCR was carried out on the DNA extracts flux density of 20 μmol m-2 s-1 provided by cool white light using the primer pairs shown in Table 2 and PCR conditions fluorescent lamps (Sylvania Standard F36W/154-T8, SLI) in described in detail by Gkelis & Zaoutsos [5]. Thermal a 16:8 h light:dark cycle. cycling was carried out using an Eppendorf MasterCycler Pro (Eppendorf). PCR products were separated by 1.5% 2.2 Sampling Sites and Strain isolation (w/v) agarose gel in 1X TAE buffer. The gels were stained with ethidium bromide and photographed under UV Strains were isolated from surface water samples collected transillumination. from freshwaters of Greece between 1999 and 2010 (Table DNA extracted from Microcystis aeruginosa M6 strain 1); for a description of the Kerkini Reservoir and Lakes was used as positive control for the amplification of mcyA, Amvrakia, Doirani, Kastoria, Mikri Prespa, Pamvotis, mcyB and mcyE gene targets; DNA from Cylindrospermopsis Paralimni, Volvi, see [1 and 4]. Lake Pikrolimni is located raciborskii Aqs strain was used as positive control for in the basin of Kilkis plain, near Thessaloniki (23 km), in the amplification of the ps (peptide syntethase) and pks northern Greece. It is a small, shallow lake which usually (polyketide synthase) genetic determinants; DNA from dries out during summer. It has an average depth of Aphanizomenon gracile A040 strain was used as positive about 0.5–0.7 m and covers an area about 4.5 km2 when control for the detection of sxtI target gene (see [26]). All it is flooded [22]. Strains were isolated on solid growth positive controls we used produced an amplification media using classical microbiological techniques and product under the tested conditions. grown as batch clonal unialgal cultures. The strains were purified unialgal by repeated transfer of single colonies or 2.6 Cyanotoxin analyses trichomes of cyanobacteria on BG-11 medium agar plates; all strains were derived from a single colony or trichome. The Abraxis Microcystin (520011), Saxitoxin (52255B), and The isolates were deposited in Aristotle University of Cylindrospermopsin (522011) Microtiter Plate Kits were 54 S. Gkelis et al. used to determine the presence of Microcystins (MCs), percentage of >15% were not accepted. Strains were Saxitoxins (STXs), and Cylindrospermopsins (CYNs), considered positive for a cyanotoxin when concentration respectively. Eight-to-ten mL from each culture were was higher of the lowest concentration of the standards centrifuged and the pellet was freeze-dried. provided for each cyanotoxin. MC, STX and CYN from each strain were extracted by placing up to 1200mg of freeze-dried material in eight mL of water
Recommended publications
  • Du 18E CONGRÈS De L’ASSOCIATION INTERNATIONALE Pour L’HISTOIRE Du VERRE C Y M B C Y M B
    ANNALES Thessaloniki 2009 du 18e CONGRÈS de l’ASSOCIATION INTERNATIONALE pour l’HISTOIRE du VERRE C Y M B C Y M B C Y M B ANNALES du 18e CONGRÈS de l’ASSOCIATION INTERNATIONALE pour l’HISTOIRE du VERRE Editors Despina Ignatiadou, Anastassios Antonaras Editing Committee Nadia Coutsinas Ian C. Freestone Sylvia Fünfschilling Caroline Jackson Janet Duncan Jones Marie-Dominique Nenna Lisa Pilosi Maria Plastira-Valkanou Jennifer Price Jane Shadel Spillman Marco Verità David Whitehouse B M Y C Thessaloniki 2009 C Y M B i C Y M B C Y M B C Y M B B M Y C Couverture / Cover illustration The haematinon bowl from Pydna. Height 5.5 cm. © 27th Ephorate of Prehistoric and Classical Antiquities, Greece. The bowl (skyphos) is discussed in the paper by Despina Ignatiadou ‘A haematinon bowl from Pydna’, p. 69. © 2012 Thessaloniki AIHV and authors ISBN: 978-90-72290-00-7 Editors: Despina Ignatiadou, Anastassios Antonaras AIHV Association Internationale pour l’Histoire du Verre International Association for the History of Glass http: www.aihv.org Secretariat: The Corning Museum of Glass One Museum Way B M Corning NY, 14830 USA Y C Printed by: ZITI Publishing, Thessaloniki, Greece http: www.ziti.gr C Y M B ii C Y M B C Y M B C Y M B C Y M B CONTENTS PRÉFACE – MARIE-DOMINIQUE NENNA . xiii PREFACE – MARIE-DOMINIQUE NENNA . xv GREEK LITERARY SOURCES STERN MARIANNE EVA Ancient Greek technical terms related to glass production . 1 2nd MILLENNIUM BC / BRONZE AGE GLASS NIGHTINGALE GEORG Glass and faience and Mycenaean society .
    [Show full text]
  • Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
    ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004).
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Contextualizing the Archaeometric Analysis of Roman Glass
    Contextualizing the Archaeometric Analysis of Roman Glass A thesis submitted to the Graduate School of the University of Cincinnati Department of Classics McMicken College of Arts and Sciences in partial fulfillment of the requirements of the degree of Master of Arts August 2015 by Christopher J. Hayward BA, BSc University of Auckland 2012 Committee: Dr. Barbara Burrell (Chair) Dr. Kathleen Lynch 1 Abstract This thesis is a review of recent archaeometric studies on glass of the Roman Empire, intended for an audience of classical archaeologists. It discusses the physical and chemical properties of glass, and the way these define both its use in ancient times and the analytical options available to us today. It also discusses Roman glass as a class of artifacts, the product of technological developments in glassmaking with their ultimate roots in the Bronze Age, and of the particular socioeconomic conditions created by Roman political dominance in the classical Mediterranean. The principal aim of this thesis is to contextualize archaeometric analyses of Roman glass in a way that will make plain, to an archaeologically trained audience that does not necessarily have a history of close involvement with archaeometric work, the importance of recent results for our understanding of the Roman world, and the potential of future studies to add to this. 2 3 Acknowledgements This thesis, like any, has been something of an ordeal. For my continued life and sanity throughout the writing process, I am eternally grateful to my family, and to friends both near and far. Particular thanks are owed to my supervisors, Barbara Burrell and Kathleen Lynch, for their unending patience, insightful comments, and keen-eyed proofreading; to my parents, Julie and Greg Hayward, for their absolute faith in my abilities; to my colleagues, Kyle Helms and Carol Hershenson, for their constant support and encouragement; and to my best friend, James Crooks, for his willingness to endure the brunt of my every breakdown, great or small.
    [Show full text]
  • Geochemical Status and Interactions Between Soil and Groundwater Systems in the Area of Akrefnio, Central Greece
    DOI: 10.2478/v10025-012-0012-1 JOURNAL OF WATER AND LAND DEVELOPMENT J. Water Land Dev. No. 15, 2011: 127–144 Geochemical status and interactions between soil and groundwater systems in the area of Akrefnio, Central Greece. Risk assessment, under the scope of mankind and natural environment Evangelos TZIRITIS, Akindinos KELEPERTSIS, Gina FAKINOU University of Athens, Section of Economic Geology and Geochemistry, Faculty of Geology, Panepis- timioupolis, Ano Ilisia, 15784, Greece; [email protected] Abstract: Totally 50 samples of groundwater and soil were collected from the area of Akrefnio (cen- tral Greece), in order to assess the geochemical status and the risk for humans and natural environ- ment. The analytical results and processing of the initial data revealed that the main factors control- ling hydrogeochemistry are the natural enrichment from calcareous substrate and the manmade pollu- tion through extensive use of N-fertilizers. Soil geochemistry was mainly influenced by the occur- rence of lateritic horizons, which gave raise to elevated concentrations of Ni and Cr in the majority of soil samples. Although most of the geochemical enrichment processes between soil and groundwater are common, the above geochemical systems don’t seem to interact, and act most of the times inde- pendently. Risk assessment of natural and mankind environment revealed that groundwater is suitable for drinking but not for irrigation, due to high salinity. Finally, soils are highly polluted by Ni and Cr, and thus are inappropriate for the existing agricultural land uses. Key words: Akrefnio, central Greece, geochemistry, groundwater, risk assessment, soil INTRODUCTION The study area is located in the vicinity of Akrefnio city, which lies about 100 km northern of Athens, central Greece.
    [Show full text]
  • New VERYMACEDONIA Pdf Guide
    CENTRAL CENTRAL ΜΑCEDONIA the trip of your life ΜΑCEDONIA the trip of your life CAΝ YOU MISS CAΝ THIS? YOU MISS THIS? #can_you_miss_this REGION OF CENTRAL MACEDONIA ISBN: 978-618-84070-0-8 ΤΗΕSSALΟΝΙΚΙ • SERRES • ΙΜΑΤΗΙΑ • PELLA • PIERIA • HALKIDIKI • KILKIS ΕΣ. ΑΥΤΙ ΕΞΩΦΥΛΛΟ ΟΠΙΣΘΟΦΥΛΛΟ ΕΣ. ΑΥΤΙ ΜΕ ΚΟΛΛΗΜΑ ΘΕΣΗ ΓΙΑ ΧΑΡΤΗ European emergency MUSEUMS PELLA KTEL Bus Station of Litochoro KTEL Bus Station Thermal Baths of Sidirokastro number: 112 Archaeological Museum HOSPITALS - HEALTH CENTERS 23520 81271 of Thessaloniki 23230 22422 of Polygyros General Hospital of Edessa Urban KTEL of Katerini 2310 595432 Thermal Baths of Agkistro 23710 22148 23813 50100 23510 37600, 23510 46800 KTEL Bus Station of Veria 23230 41296, 23230 41420 HALKIDIKI Folkloric Museum of Arnea General Hospital of Giannitsa Taxi Station of Katerini 23310 22342 Ski Center Lailia HOSPITALS - HEALTH CENTERS 6944 321933 23823 50200 23510 21222, 23510 31222 KTEL Bus Station of Naoussa 23210 58783, 6941 598880 General Hospital of Polygyros Folkloric Museum of Afytos Health Center of Krya Vrissi Port Authority/ C’ Section 23320 22223 Serres Motorway Station 23413 51400 23740 91239 23823 51100 of Skala, Katerini KTEL Bus Station of Alexandria 23210 52592 Health Center of N. Moudania USEFUL Folkloric Museum of Nikiti Health Center of Aridea 23510 61209 23330 23312 Mountain Shelter EOS Nigrita 23733 50000 23750 81410 23843 50000 Port Authority/ D’ Section Taxi Station of Veria 23210 62400 Health Center of Kassandria PHONE Anthropological Museum Health Center of Arnissa of Platamonas 23310 62555 EOS of Serres 23743 50000 of Petralona 23813 51000 23520 41366 Taxi Station of Naoussa 23210 53790 Health Center of N.
    [Show full text]
  • HYDROGEOCHEMICAL CONDITION of the PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3
    ∆ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Πρακτικά 10ου ∆ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Proceedings of the 10th International Congress, Thessaloniki, April 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3. 1 Inst.of Material science, N.C.S.R. «Demokritos», Aghia Paraskevi, Attiki 2 General secretary Research and Technology, Mesogion 12-14, Athens 3 School of Geology, Aristotle University of Thessaloniki ABSTRACT In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake. We also sampled fresh water of the region. The depth of the borehole in the thermal spa is approximately 250 meters. This water is naturally sparkling, with a metallic aftertaste and a slight organic smell. The samples were taken twice during the year: in summer (8/2002) and in winter (2003). The analytical scheme includes field measurements of temperature, conductivity and pH. + + 2+ 2+ - - 2- 2- - - - - Major ions (Na , K , Ca , Mg , Cl , Br , SO4 , CO3 , HCO3 , NO3 ), F and Br were determined, in laboratory, according to standard analytical methods. Samples were also subjected to isotopic analysis of δ18O and δ2H. The results from the chemical analyses of the samples, show that the waters taken from the borehole, are of the type Mg- (Na-Ca)-HCO3 and the salts of the lake are of the type Na-Cl- (CO3- SO4).
    [Show full text]
  • Hydrochemical.Pdf
    Bulletin of the Geological Society of Greece Vol. 36, 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E. Inst.of Material science, N.C.S.R. «Demokritos» Maniatis Y. Inst.of Material science, N.C.S.R. «Demokritos» Tzavidopoulos E. Inst.of Material science, N.C.S.R. «Demokritos» Poutoukis D. General secretary Research and Technology Albanakis K. School of Geology, Aristotle University of Thessaloniki https://doi.org/10.12681/bgsg.16618 Copyright © 2018 E. Dotsika, Y. Maniatis, E. Tzavidopoulos, D. Poutoukis, K. Albanakis To cite this article: Dotsika, E., Maniatis, Y., Tzavidopoulos, E., Poutoukis, D., & Albanakis, K. (2004). HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE). Bulletin of the Geological Society of Greece, 36(1), 192-195. doi:https://doi.org/10.12681/bgsg.16618 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 07/04/2020 09:53:29 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ XXXVI, 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Πρακτικά 10ou Διεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Proceedings of the 10th International Congress, Thessaloniki, April 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3. 11nst.of Material science, N.C.S.R. «Demokritos», Aghia Paraskevi, Attiki 2 General secretary Research and Technology, Mesogion 12-14, Athens 3 School of Geology, Aristotle University of Thessaloniki ABSTRACT In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake.
    [Show full text]
  • Glass Making in the Greco-Roman World Studies in Archaeological Sciences 4
    Glass Making in the Greco-Roman World Studies in Archaeological Sciences 4 The series Studies in Archaeological Sciences presents state-of-the-art methodological, technical or material science contributions to Archaeological Sciences. The series aims to reconstruct the integrated story of human and material culture through time and testifies to the necessity of inter- and multidisciplinary research in cultural heritage studies. Editor-in-Chief Prof. Patrick Degryse, Centre for Archaeological Sciences, KU Leuven, Belgium Editorial Board Prof. Ian Freestone, Cardiff Department of Archaeology, Cardiff University, United Kingdom Prof. Carl Knappett, Department of Art, University of Toronto, Canada Prof. Andrew Shortland, Centre for Archaeological and Forensic Analysis, Cranfield University, United Kingdom Prof. Manuel Sintubin, Department of Earth & Environmental Sciences, KU Leuven, Belgium Prof. Marc Waelkens, Centre for Archaeological Sciences, KU Leuven, Belgium Glass Making in the Greco-Roman World Results of the ARCHGLASS Project Edited by Patrick Degryse Leuven University Press Published with support of © 2014 by Leuven University Press / Presses Universitaires de Louvain / Universitaire Pers Leuven. Minderbroedersstraat 4, B-3000 Leuven (Belgium). All rights reserved. Except in those cases expressly determined by law, no part of this publication may be multiplied, saved in an automated datafile or made public in any way whatsoever without the express prior written consent of the publishers. ISBN 978 94 6270 007 9 D / 2014 / 1869 / 86 NUR: 682/933 Lay-out: Friedemann Vervoort Cover: Jurgen Leemans 5 Preface The ARCHGLASS “Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials” project, is a Seventh Framework Programme “Ideas” project funded under the European Research Council Starting Grant scheme.
    [Show full text]
  • Thessaloniki Perfecture
    SKOPIA - BEOGRAD SOFIA BU a MONI TIMIOU PRODROMOU YU Iriniko TO SOFIASOFIA BU Amoudia Kataskinossis Ag. Markos V Karperi Divouni Skotoussa Antigonia Melenikitsio Kato Metohi Hionohori Idomeni 3,5 Metamorfossi Ag. Kiriaki 5 Ano Hristos Milohori Anagenissi 3 8 3,5 5 Kalindria Fiska Kato Hristos3,5 3 Iliofoto 1,5 3,5 Ag. Andonios Nea Tiroloi Inoussa Pontoiraklia 6 5 4 3,5 Ag. Pnevma 3 Himaros V 1 3 Hamilo Evzoni 3,5 8 Lefkonas 5 Plagia 5 Gerakari Spourgitis 7 3 1 Meg. Sterna 3 2,5 2,5 1 Ag. Ioanis 2 0,5 1 Dogani 3,5 Himadio 1 Kala Dendra 3 2 Neo Souli Em. Papas Soultogianeika 3 3,5 4 7 Melissourgio 2 3 Plagia 4,5 Herso 3 Triada 2 Zevgolatio Vamvakia 1,5 4 5 5 4 Pondokerassia 4 3,5 Fanos 2,5 2 Kiladio Kokinia Parohthio 2 SERES 7 6 1,5 Kastro 7 2 2,5 Metala Anastassia Koromilia 4 5,5 3 0,5 Eleftherohori Efkarpia 1 2 4 Mikro Dassos 5 Mihalitsi Kalolivado Metaxohori 1 Mitroussi 4 Provatas 2 Monovrissi 1 4 Dafnoudi Platonia Iliolousto 3 3 Kato Mitroussi 5,5 6,5 Hrisso 2,5 5 5 3,5 Monoklissia 4,5 3 16 6 Ano Kamila Neohori 3 7 10 6,5 Strimoniko 3,5 Anavrito 7 Krinos Pentapoli Ag. Hristoforos N. Pefkodassos 5,5 Terpilos 5 2 12 Valtoudi Plagiohori 2 ZIHNI Stavrohori Xirovrissi 2 3 1 17,5 2,5 3 Latomio 4,5 3,5 2 Dipotamos 4,5 Livadohori N.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Geothermal Exploration and Development Activities in Greece During 1995-1999
    GEOTHERMAL EXPLORATION AND DEVELOPMENT ACTIVITIES IN GREECE DURING 1995-1999 Michael Fytikas1, Nikolaos Andritsos2, Grigorios Karydakis3, Nikolaos Kolios3, Dimitrios Mendrinos4 and Maria Papachristou1 1Aristotle University of Thessaloniki, Dept. of Geology, GR 54006, Thessaloniki, Greece 2CPERI & Dept. Chemical Engineering, AUTh, P.O Box 1517, GR 54006, Thessaloniki, Greece 3IGME, Dept. of Geothermal Energy, Mesogeion 70, GR 115 27, Athens, Greece 4Omega European Consulting, Navarinou 6, Pefki 15121, Athens, Greece Key Words: geothermal exploration, geothermal uses, country has markedly expanded through the continuation of research update, Greece. and productive activities. The bulk of exploration activities were carried out by the Institute of Geological and Mineral ABSTRACT Exploration (IGME). A map with the geothermal localities in Greece is shown in Figure 1. The paper reviews the research and development activities in geothermal energy in Greece during the period 1995-1999. The low enthalpy geothermal research has proceeded at a Information is also provided on the current status of relative high rate. A significant amount of data and information geothermal direct heat uses. Greece has a great geothermal has been gathered, revealing new geothermal fields (mainly potential. This potential has been confirmed and verified by the low enthalpy fields, most of which are located in Northern discovery and exploration of new geothermal fields during the Greece), or expanding the areas of known fields. Even in past five years (1995-1999). During this period the geothermal Western Greece, which is the least favorable territory in terms research and applications were mainly related to low enthalpy of geothermics, and particularly in the areas of Antirrio and fields.
    [Show full text]