Nourishing Archaeology and Science Patrick Degrysea,1 and Andrew J

Total Page:16

File Type:pdf, Size:1020Kb

Nourishing Archaeology and Science Patrick Degrysea,1 and Andrew J COMMENTARY COMMENTARY Nourishing archaeology and science Patrick Degrysea,1 and Andrew J. Shortlandb pare meat mummies, offerings of food es- aEarth and Environmental Sciences, Centre for Archaeological Sciences, Katholieke b pecially prepared for the dead. This work Universiteit Leuven, BE-3001 Leuven, Belgium; and Center for Archaeological and Forensic complements previous work on animal and Analysis, Cranfield Forensic Institute, Cranfield University, Shrivenham SN6 8LA, human mummies from ancient Egypt (4, United Kingdom 5), and uses advanced organic chemistry to answer some of the higher-level archae- ological research questions mentioned above. Archaeology is an interdisciplinary science studying prehistoric sites throughout the The production and preservation of food is par excellence. In its quest to reconstruct world. Perhaps one of the key reasons for this fundamental to every society. Clark et al. (3) human behavior in the natural and cultural is the very limitation of the evidence supplied discuss the preservation of meat products, environment of the past, archaeology uses by scattered, nonliterate, prehistoric groups specifically that of birds and large mammals. knowledge and techniques from many differ- and societies. Until recently, the efforts of Meat production could be broadly divided ent academic disciplines. Indeed, there are prehistorians to include scientific analysis into two main categories: (i) the general pro- very few sciences that have no relevance to left scholars working on the great ancient duction for routine consumption by either archaeology. The concept of “holistic archae- civilizations far behind. The very wealth of the population as a whole, or some elite sub- ology” was specifically defined as an inclusive evidence available here, especially that de- group of the population; and (ii)theproduc- approach to archaeology, comprising all as- rived from abundant ancient textual sour- tion and preservation of meat products for pects of human societies, from ecology and ces, has militated against the application of ritual use. This second group could include economy, to social organization and politics, scientific analysis on the same scale as that meat for temple offerings and the victual to art and ideology (1). In many excavation used in prehistory. However, that applica- mummies, designed to provide food for the projects, however, the term has been partic- tion is rapidly changing, especially with the dead [figure 1 in Clark et al. (3)]. As Clark ularly used to refer to the integration in ar- understanding that the texts do not tell the et al. (3) state, the preservation of victual chaeology of the work and results of exact entire story. More and more analysis is be- mummies sits at an interesting intersection or beta scientists, and less so to the work of ing conducted by established teams of re- between routine production and preservation anthropologists or humanistic scholars (2). searchers using advanced techniques. In of meat (which it resembles because it is a The integration of the exact sciences into PNAS, Clark et al. (3) present the chemical food product being preserved), and the much archaeological research has been led by those composition of organic balms used to pre- better known, studied, and much more wide- spread preservation of human and animal mummies (which have the ritual aspect, but not the food link). In Egypt, the problems of producing and preserving meats are exacerbated by two key factors: urban living and climate. From the beginning of the fourth millennium B.C.E., we see the formation of a single state in Egypt and the growth of urban living. By the time of the objects analyzed, the second half of the first millennium B.C.E., urban areas were large and relatively abundant. Therefore, food hadtobepreparedatadistanceandbrought into the population centers, necessitating some time delay. The climate in Egypt was very similar then to what it is now. The heat would mean that meat would have to be eaten very quickly before it became bad, whichwouldhappeninonlyamatterof hours. There is, therefore, an absolute neces- sity to preserve food—especially meat prod- ucts—and fast, to prevent them from spoiling. Very little is known about how this preserva- tionwasdonedaytodayforlargeancient Author contributions: P.D. and A.J.S. wrote the paper. The authors declare no conflict of interest. Fig. 1. Egyptian tomb model showing a scene of food preparation, including the butchery of a cow (Lower, Right), See companion article 10.1073/pnas.1315160110. from Sedment, Egypt, ninth Dynasty (2160–2025 B.C.E.). Now in the Ashmolean Museum, museum no. 1To whom correspondence should be addressed. E-mail: Patrick. AN.1921.1416. Copyright of the Ashmolean Museum, University of Oxford. [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1319940110 PNAS Early Edition | 1of2 Downloaded by guest on September 27, 2021 cities. The Egyptians did not write about such othervariationsofthetransliterationofthese Great Royal Wife of Amenhotep III—that things in detail, and surviving meat from names are used), and tombs of high-rank- is to say, his principal queen—and as such habitation sites is at best very rare. What ing individuals, such as Isetemkheb. she was perhaps second in power only to do survive are iconographic representations The results show that three of the four the King himself. The monarchs received in tombs of animal slaughter and, poten- victual mummies were apparently not treated a lavish funeral, and the tomb was dis- tially, the preservation of the meat (Fig. 1). with any organic balms or resins (3). This covered largely intact by J. E. Quibbel in However, these scenes are often difficult to finding fits in with what is inferred about 1905. It was the most important tomb to interpret and represent idealized views, not Egyptian meat production in general. The be found until the discovery of the Tomb of necessarily what was being carried out in main preservation techniques for meat were Tutankhamen (incidentally, Yuya and Tjuiu’s actuality. To these interpretations can be probably various sorts of drying and salting great-grandson) by Harold Carter in 1922. added ethnographic observations from Egypt (7). Previous work on victual mummies has That Yuya and Tjuiu belonged to the highest and elsewhere in the world. There is, there- suggested that these were the most common level in Egyptian society is beyond doubt, and fore, very little information about the preser- way the meats were preserved (7, 8), and pre- so it is interesting that the victual mummy vation of meat products in general in ancient vious work by scanning electron microscope from their tomb is different from the others. Egypt, which makes the study of meat that showed salt crystals that were interpreted as The work of Clark et al. (3) shows that the waspresentedasgiftsintombs,asinClark evidence of meat salting (7). The salt used in tomb is preserved with a mixture of fat/oil et al. (3), even more significant. These find- mummification and preservation is termed and Pistacia resin, probably applied to the ings are the best view we have of what was a natrun and is an evaporitic deposit of alkaline bandages. Pistacia was used in incense and major industry, but for which direct evidence lakes. These deposits are a mixture of differ- in human mummies, and was a frequent part is lacking. ent minerals in varying proportions, mostly of the rituals of temple and tomb (16). Of the The other area where Clark et al. (3) have natron, trona, burkeite, and halite, all con- four species of Pistacia, only one is found in significant impact is that second intersection taining sodium (9). The source of the natrun Egypt, and there is no evidence that this was discussed above, the relationship to human used in this period is thought to be situated in exploited. It is likely, therefore, that this resin and animal mummies. Human mummies the Wadi el Natrun in Northern Egypt, 100 represents an import from the shores of the are of course some of the most iconic re- km northwest of Cairo. This theory is mainly Mediterranean Sea or Levant. Pistacia resin mains to survive from ancient Egypt. These based on the writing of Pliny the Elder (10), has been detected in imported Canaanite am- mummies have been studied in detail since although he also mentions other sources, phorae found at the ancient city of Amarna, the beginning of the 19th century A.C.E. which are interpreted as al-Barnuj in Egypt andinbowlsfromthesamesite,whereitwas The method of wrapping human remains, and current lake Pikrolimni in Greece (11). burned as incense (16). Once again, there is carried out by the people of Egypt through- Other possible sources are at-Tarabiya in a link to Yuya and Tjuiu, as the creator of out the millennia, is well known. Closely the Eastern Delta and al-Kab in Upper Amarna was probably their grandson, King linked are animal mummies, which are ex- Egypt (12). However, Egypt, and most likely Amenhotep IV, later known as Akenhaten. tremely abundant, with millions of mum- the Wadi el Natrun and al-Barnuj, is con- The fact that the most complex prepara- mies of mammals, birds, and reptiles being sidered the main supplier of salt to the pre- tion for a victual mummy belongs to a very produced as votive offerings for temples and medieval world. No unambiguous evidence high-status tomb shows the owners’ access to tombs (4). Clark et al. (3) analyze the organic exists for the use of either a single or multi- costly and rare resources. High status does preservatives, such as bitumen, beeswax, and ple sources of salt during these times, al- not always equate to complex preparations, resins used in the mummification process, though efforts are being made to develop though, as relatively simply preserved meats a relatively new approach in the study of a method for provenancing natrun salts (13).
Recommended publications
  • Du 18E CONGRÈS De L’ASSOCIATION INTERNATIONALE Pour L’HISTOIRE Du VERRE C Y M B C Y M B
    ANNALES Thessaloniki 2009 du 18e CONGRÈS de l’ASSOCIATION INTERNATIONALE pour l’HISTOIRE du VERRE C Y M B C Y M B C Y M B ANNALES du 18e CONGRÈS de l’ASSOCIATION INTERNATIONALE pour l’HISTOIRE du VERRE Editors Despina Ignatiadou, Anastassios Antonaras Editing Committee Nadia Coutsinas Ian C. Freestone Sylvia Fünfschilling Caroline Jackson Janet Duncan Jones Marie-Dominique Nenna Lisa Pilosi Maria Plastira-Valkanou Jennifer Price Jane Shadel Spillman Marco Verità David Whitehouse B M Y C Thessaloniki 2009 C Y M B i C Y M B C Y M B C Y M B B M Y C Couverture / Cover illustration The haematinon bowl from Pydna. Height 5.5 cm. © 27th Ephorate of Prehistoric and Classical Antiquities, Greece. The bowl (skyphos) is discussed in the paper by Despina Ignatiadou ‘A haematinon bowl from Pydna’, p. 69. © 2012 Thessaloniki AIHV and authors ISBN: 978-90-72290-00-7 Editors: Despina Ignatiadou, Anastassios Antonaras AIHV Association Internationale pour l’Histoire du Verre International Association for the History of Glass http: www.aihv.org Secretariat: The Corning Museum of Glass One Museum Way B M Corning NY, 14830 USA Y C Printed by: ZITI Publishing, Thessaloniki, Greece http: www.ziti.gr C Y M B ii C Y M B C Y M B C Y M B C Y M B CONTENTS PRÉFACE – MARIE-DOMINIQUE NENNA . xiii PREFACE – MARIE-DOMINIQUE NENNA . xv GREEK LITERARY SOURCES STERN MARIANNE EVA Ancient Greek technical terms related to glass production . 1 2nd MILLENNIUM BC / BRONZE AGE GLASS NIGHTINGALE GEORG Glass and faience and Mycenaean society .
    [Show full text]
  • Contextualizing the Archaeometric Analysis of Roman Glass
    Contextualizing the Archaeometric Analysis of Roman Glass A thesis submitted to the Graduate School of the University of Cincinnati Department of Classics McMicken College of Arts and Sciences in partial fulfillment of the requirements of the degree of Master of Arts August 2015 by Christopher J. Hayward BA, BSc University of Auckland 2012 Committee: Dr. Barbara Burrell (Chair) Dr. Kathleen Lynch 1 Abstract This thesis is a review of recent archaeometric studies on glass of the Roman Empire, intended for an audience of classical archaeologists. It discusses the physical and chemical properties of glass, and the way these define both its use in ancient times and the analytical options available to us today. It also discusses Roman glass as a class of artifacts, the product of technological developments in glassmaking with their ultimate roots in the Bronze Age, and of the particular socioeconomic conditions created by Roman political dominance in the classical Mediterranean. The principal aim of this thesis is to contextualize archaeometric analyses of Roman glass in a way that will make plain, to an archaeologically trained audience that does not necessarily have a history of close involvement with archaeometric work, the importance of recent results for our understanding of the Roman world, and the potential of future studies to add to this. 2 3 Acknowledgements This thesis, like any, has been something of an ordeal. For my continued life and sanity throughout the writing process, I am eternally grateful to my family, and to friends both near and far. Particular thanks are owed to my supervisors, Barbara Burrell and Kathleen Lynch, for their unending patience, insightful comments, and keen-eyed proofreading; to my parents, Julie and Greg Hayward, for their absolute faith in my abilities; to my colleagues, Kyle Helms and Carol Hershenson, for their constant support and encouragement; and to my best friend, James Crooks, for his willingness to endure the brunt of my every breakdown, great or small.
    [Show full text]
  • Geochemical Status and Interactions Between Soil and Groundwater Systems in the Area of Akrefnio, Central Greece
    DOI: 10.2478/v10025-012-0012-1 JOURNAL OF WATER AND LAND DEVELOPMENT J. Water Land Dev. No. 15, 2011: 127–144 Geochemical status and interactions between soil and groundwater systems in the area of Akrefnio, Central Greece. Risk assessment, under the scope of mankind and natural environment Evangelos TZIRITIS, Akindinos KELEPERTSIS, Gina FAKINOU University of Athens, Section of Economic Geology and Geochemistry, Faculty of Geology, Panepis- timioupolis, Ano Ilisia, 15784, Greece; [email protected] Abstract: Totally 50 samples of groundwater and soil were collected from the area of Akrefnio (cen- tral Greece), in order to assess the geochemical status and the risk for humans and natural environ- ment. The analytical results and processing of the initial data revealed that the main factors control- ling hydrogeochemistry are the natural enrichment from calcareous substrate and the manmade pollu- tion through extensive use of N-fertilizers. Soil geochemistry was mainly influenced by the occur- rence of lateritic horizons, which gave raise to elevated concentrations of Ni and Cr in the majority of soil samples. Although most of the geochemical enrichment processes between soil and groundwater are common, the above geochemical systems don’t seem to interact, and act most of the times inde- pendently. Risk assessment of natural and mankind environment revealed that groundwater is suitable for drinking but not for irrigation, due to high salinity. Finally, soils are highly polluted by Ni and Cr, and thus are inappropriate for the existing agricultural land uses. Key words: Akrefnio, central Greece, geochemistry, groundwater, risk assessment, soil INTRODUCTION The study area is located in the vicinity of Akrefnio city, which lies about 100 km northern of Athens, central Greece.
    [Show full text]
  • Isolation and Preliminary Characterization of Cyanobacteria Strains from Freshwaters of Greece
    Open Life Sci. 2015; 10: 52–60 Research Article Open Access Spyros Gkelis*, Pablo Fernández Tussy, Nikos Zaoutsos Isolation and preliminary characterization of cyanobacteria strains from freshwaters of Greece Abstract: Cyanobacterial harmful algal blooms (or 1 Introduction CyanoHABs) represent one of the most conspicuous waterborne microbial hazards. The characterization of Cyanobacteria are photosynthetic, prokaryotic organisms the bloom communities remains problematic because which occur primarily in freshwater and saline the cyanobacterial taxonomy of certain genera has not environments, but also in terrestrial ecosystems. Their yet been resolved. In this study, 29 planktic and benthic presence in lakes with high nutrient levels can lead to a cyanobacterial strains were isolated from freshwaters mass increase in cyanobacterial cell numbers, with the located in Greece. The strains were assigned to the genera formation of blooms, which results in a depreciation of Chroococcus, Microcystis, Synechococcus, Jaaginema, water quality [1]. Cyanobacterial harmful algal blooms Limnothrix, Pseudanabaena, Anabaena, and Calothrix (or CyanoHABs) represent one of the most conspicuous and screened for the production of the cyanotoxins waterborne microbial hazards to human and agricultural microcystins (MCs), cylindrospermopsins (CYNs), and water supplies, fishery production, and freshwater and saxitoxins (STXs) using molecular (PCR amplification of marine ecosystems [2]. This hazard results from the seven genes implicated in cyanotoxin biosynthesis)
    [Show full text]
  • New VERYMACEDONIA Pdf Guide
    CENTRAL CENTRAL ΜΑCEDONIA the trip of your life ΜΑCEDONIA the trip of your life CAΝ YOU MISS CAΝ THIS? YOU MISS THIS? #can_you_miss_this REGION OF CENTRAL MACEDONIA ISBN: 978-618-84070-0-8 ΤΗΕSSALΟΝΙΚΙ • SERRES • ΙΜΑΤΗΙΑ • PELLA • PIERIA • HALKIDIKI • KILKIS ΕΣ. ΑΥΤΙ ΕΞΩΦΥΛΛΟ ΟΠΙΣΘΟΦΥΛΛΟ ΕΣ. ΑΥΤΙ ΜΕ ΚΟΛΛΗΜΑ ΘΕΣΗ ΓΙΑ ΧΑΡΤΗ European emergency MUSEUMS PELLA KTEL Bus Station of Litochoro KTEL Bus Station Thermal Baths of Sidirokastro number: 112 Archaeological Museum HOSPITALS - HEALTH CENTERS 23520 81271 of Thessaloniki 23230 22422 of Polygyros General Hospital of Edessa Urban KTEL of Katerini 2310 595432 Thermal Baths of Agkistro 23710 22148 23813 50100 23510 37600, 23510 46800 KTEL Bus Station of Veria 23230 41296, 23230 41420 HALKIDIKI Folkloric Museum of Arnea General Hospital of Giannitsa Taxi Station of Katerini 23310 22342 Ski Center Lailia HOSPITALS - HEALTH CENTERS 6944 321933 23823 50200 23510 21222, 23510 31222 KTEL Bus Station of Naoussa 23210 58783, 6941 598880 General Hospital of Polygyros Folkloric Museum of Afytos Health Center of Krya Vrissi Port Authority/ C’ Section 23320 22223 Serres Motorway Station 23413 51400 23740 91239 23823 51100 of Skala, Katerini KTEL Bus Station of Alexandria 23210 52592 Health Center of N. Moudania USEFUL Folkloric Museum of Nikiti Health Center of Aridea 23510 61209 23330 23312 Mountain Shelter EOS Nigrita 23733 50000 23750 81410 23843 50000 Port Authority/ D’ Section Taxi Station of Veria 23210 62400 Health Center of Kassandria PHONE Anthropological Museum Health Center of Arnissa of Platamonas 23310 62555 EOS of Serres 23743 50000 of Petralona 23813 51000 23520 41366 Taxi Station of Naoussa 23210 53790 Health Center of N.
    [Show full text]
  • HYDROGEOCHEMICAL CONDITION of the PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3
    ∆ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Πρακτικά 10ου ∆ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Proceedings of the 10th International Congress, Thessaloniki, April 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3. 1 Inst.of Material science, N.C.S.R. «Demokritos», Aghia Paraskevi, Attiki 2 General secretary Research and Technology, Mesogion 12-14, Athens 3 School of Geology, Aristotle University of Thessaloniki ABSTRACT In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake. We also sampled fresh water of the region. The depth of the borehole in the thermal spa is approximately 250 meters. This water is naturally sparkling, with a metallic aftertaste and a slight organic smell. The samples were taken twice during the year: in summer (8/2002) and in winter (2003). The analytical scheme includes field measurements of temperature, conductivity and pH. + + 2+ 2+ - - 2- 2- - - - - Major ions (Na , K , Ca , Mg , Cl , Br , SO4 , CO3 , HCO3 , NO3 ), F and Br were determined, in laboratory, according to standard analytical methods. Samples were also subjected to isotopic analysis of δ18O and δ2H. The results from the chemical analyses of the samples, show that the waters taken from the borehole, are of the type Mg- (Na-Ca)-HCO3 and the salts of the lake are of the type Na-Cl- (CO3- SO4).
    [Show full text]
  • Hydrochemical.Pdf
    Bulletin of the Geological Society of Greece Vol. 36, 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E. Inst.of Material science, N.C.S.R. «Demokritos» Maniatis Y. Inst.of Material science, N.C.S.R. «Demokritos» Tzavidopoulos E. Inst.of Material science, N.C.S.R. «Demokritos» Poutoukis D. General secretary Research and Technology Albanakis K. School of Geology, Aristotle University of Thessaloniki https://doi.org/10.12681/bgsg.16618 Copyright © 2018 E. Dotsika, Y. Maniatis, E. Tzavidopoulos, D. Poutoukis, K. Albanakis To cite this article: Dotsika, E., Maniatis, Y., Tzavidopoulos, E., Poutoukis, D., & Albanakis, K. (2004). HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE). Bulletin of the Geological Society of Greece, 36(1), 192-195. doi:https://doi.org/10.12681/bgsg.16618 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 07/04/2020 09:53:29 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ XXXVI, 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Πρακτικά 10ou Διεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Proceedings of the 10th International Congress, Thessaloniki, April 2004 HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE) Dotsika E.1, Maniatis Y.1 , Tzavidopoulos E.1, Poutoukis D.2 and Albanakis K.3. 11nst.of Material science, N.C.S.R. «Demokritos», Aghia Paraskevi, Attiki 2 General secretary Research and Technology, Mesogion 12-14, Athens 3 School of Geology, Aristotle University of Thessaloniki ABSTRACT In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake.
    [Show full text]
  • Glass Making in the Greco-Roman World Studies in Archaeological Sciences 4
    Glass Making in the Greco-Roman World Studies in Archaeological Sciences 4 The series Studies in Archaeological Sciences presents state-of-the-art methodological, technical or material science contributions to Archaeological Sciences. The series aims to reconstruct the integrated story of human and material culture through time and testifies to the necessity of inter- and multidisciplinary research in cultural heritage studies. Editor-in-Chief Prof. Patrick Degryse, Centre for Archaeological Sciences, KU Leuven, Belgium Editorial Board Prof. Ian Freestone, Cardiff Department of Archaeology, Cardiff University, United Kingdom Prof. Carl Knappett, Department of Art, University of Toronto, Canada Prof. Andrew Shortland, Centre for Archaeological and Forensic Analysis, Cranfield University, United Kingdom Prof. Manuel Sintubin, Department of Earth & Environmental Sciences, KU Leuven, Belgium Prof. Marc Waelkens, Centre for Archaeological Sciences, KU Leuven, Belgium Glass Making in the Greco-Roman World Results of the ARCHGLASS Project Edited by Patrick Degryse Leuven University Press Published with support of © 2014 by Leuven University Press / Presses Universitaires de Louvain / Universitaire Pers Leuven. Minderbroedersstraat 4, B-3000 Leuven (Belgium). All rights reserved. Except in those cases expressly determined by law, no part of this publication may be multiplied, saved in an automated datafile or made public in any way whatsoever without the express prior written consent of the publishers. ISBN 978 94 6270 007 9 D / 2014 / 1869 / 86 NUR: 682/933 Lay-out: Friedemann Vervoort Cover: Jurgen Leemans 5 Preface The ARCHGLASS “Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials” project, is a Seventh Framework Programme “Ideas” project funded under the European Research Council Starting Grant scheme.
    [Show full text]
  • Thessaloniki Perfecture
    SKOPIA - BEOGRAD SOFIA BU a MONI TIMIOU PRODROMOU YU Iriniko TO SOFIASOFIA BU Amoudia Kataskinossis Ag. Markos V Karperi Divouni Skotoussa Antigonia Melenikitsio Kato Metohi Hionohori Idomeni 3,5 Metamorfossi Ag. Kiriaki 5 Ano Hristos Milohori Anagenissi 3 8 3,5 5 Kalindria Fiska Kato Hristos3,5 3 Iliofoto 1,5 3,5 Ag. Andonios Nea Tiroloi Inoussa Pontoiraklia 6 5 4 3,5 Ag. Pnevma 3 Himaros V 1 3 Hamilo Evzoni 3,5 8 Lefkonas 5 Plagia 5 Gerakari Spourgitis 7 3 1 Meg. Sterna 3 2,5 2,5 1 Ag. Ioanis 2 0,5 1 Dogani 3,5 Himadio 1 Kala Dendra 3 2 Neo Souli Em. Papas Soultogianeika 3 3,5 4 7 Melissourgio 2 3 Plagia 4,5 Herso 3 Triada 2 Zevgolatio Vamvakia 1,5 4 5 5 4 Pondokerassia 4 3,5 Fanos 2,5 2 Kiladio Kokinia Parohthio 2 SERES 7 6 1,5 Kastro 7 2 2,5 Metala Anastassia Koromilia 4 5,5 3 0,5 Eleftherohori Efkarpia 1 2 4 Mikro Dassos 5 Mihalitsi Kalolivado Metaxohori 1 Mitroussi 4 Provatas 2 Monovrissi 1 4 Dafnoudi Platonia Iliolousto 3 3 Kato Mitroussi 5,5 6,5 Hrisso 2,5 5 5 3,5 Monoklissia 4,5 3 16 6 Ano Kamila Neohori 3 7 10 6,5 Strimoniko 3,5 Anavrito 7 Krinos Pentapoli Ag. Hristoforos N. Pefkodassos 5,5 Terpilos 5 2 12 Valtoudi Plagiohori 2 ZIHNI Stavrohori Xirovrissi 2 3 1 17,5 2,5 3 Latomio 4,5 3,5 2 Dipotamos 4,5 Livadohori N.
    [Show full text]
  • Geothermal Exploration and Development Activities in Greece During 1995-1999
    GEOTHERMAL EXPLORATION AND DEVELOPMENT ACTIVITIES IN GREECE DURING 1995-1999 Michael Fytikas1, Nikolaos Andritsos2, Grigorios Karydakis3, Nikolaos Kolios3, Dimitrios Mendrinos4 and Maria Papachristou1 1Aristotle University of Thessaloniki, Dept. of Geology, GR 54006, Thessaloniki, Greece 2CPERI & Dept. Chemical Engineering, AUTh, P.O Box 1517, GR 54006, Thessaloniki, Greece 3IGME, Dept. of Geothermal Energy, Mesogeion 70, GR 115 27, Athens, Greece 4Omega European Consulting, Navarinou 6, Pefki 15121, Athens, Greece Key Words: geothermal exploration, geothermal uses, country has markedly expanded through the continuation of research update, Greece. and productive activities. The bulk of exploration activities were carried out by the Institute of Geological and Mineral ABSTRACT Exploration (IGME). A map with the geothermal localities in Greece is shown in Figure 1. The paper reviews the research and development activities in geothermal energy in Greece during the period 1995-1999. The low enthalpy geothermal research has proceeded at a Information is also provided on the current status of relative high rate. A significant amount of data and information geothermal direct heat uses. Greece has a great geothermal has been gathered, revealing new geothermal fields (mainly potential. This potential has been confirmed and verified by the low enthalpy fields, most of which are located in Northern discovery and exploration of new geothermal fields during the Greece), or expanding the areas of known fields. Even in past five years (1995-1999). During this period the geothermal Western Greece, which is the least favorable territory in terms research and applications were mainly related to low enthalpy of geothermics, and particularly in the areas of Antirrio and fields.
    [Show full text]
  • Northern Greece So Far, the Four Nal Properties Worldwide
    a picture map is included Gastronomy Routes and the culture of Flavours... “The gentle art of gastronomy is a friendly one… it surpasses the language barrier, creates new friendships among civilized people and warms the heart”. Samuel Chamberlain What is “Food Travel” or “Culinary Tourism”? Who can be described as a “Food Traveler” or “Gastro-Tourist”? Nowadays, new tourism products are launched regularly: some are new venues for already existing interests while others are new products that address the demands of new niche-markets. For others, as observed in culinary tourism, it is not so much a new product but rather a focus on recognizing something that already exists, refining and improving the pursuit and enjoyment of unique food and drink experi- ences, both far and near to us! Many governments and local administration authorities throughout the world are turning to tourism initiatives not only to breathe new life into stagnating economies but also to address the grave problem of rural depopulation. Culinary tourism in rural settings holds promise as a potential springboard for rural economies to blossom…! The transaction cooperation network “Gastronomy Routes and the Culture of Flavors” involves 18 Local Action Groups which originate from four Medi- terranean countries, namely Italy, Greece, Portugal and Cyprus. The core and most crucial objective of the “Medeat” cooperation is to suc- ceed in maintaining and promoting the historical, cultural and qualitative dimensions of local cuisine, in a way that also connects it to local indus- tries, cultural events and supplementary tourist activities. This gastronomic guide presents the most interesting gastronomic itinerar- ies of the territory of Kilkis – Imathia – Kozani – Florina, in Greece, as well as practical information concerning the relative places to visit with local produce, food processing units, alternative accommodation premises and similar issues.
    [Show full text]
  • Chapter 3. Glass and Other Vitreous Materials Through History
    EMU Notes in Mineralogy, Vol. 20 (2019), Chapter 3, 87–150 Glass and other vitreous materials through history Ivana ANGELINI1, Bernard GRATUZE2 and Gilberto ARTIOLI3 1Department of Cultural Heritage, Universita` di Padova, Piazza Capitaniato 7, 35139 Padova, Italy [email protected] 2CNRS, Universite´ d’Orle´ans, IRAMAT-CEB, 3D rue de la Fe´rollerie, F-45071, Orle´ans Cedex 2, France [email protected] 3Department of Geosciences and CIRCe Centre, Universita` di Padova, Via Gradenigo 6, 35131 Padova, Italy [email protected] Early vitreous materials include homogeneous glass, glassy faience, faience and glazed stones. These materials evolved slowly into more specialized substances such as enamels, engobes, lustres, or even modern metallic glass. The nature and properties of vitreous materials are summarized briefly, with an eye to the historical evolution of glass production in the Mediterranean world. Focus is on the evolution of European, Egyptian, and Near East materials. Notes on Chinese and Indian glass are reported for comparison. The most common techniques of mineralogical and chemical characterization of vitreous materials are described, highlighting the information derived for the purposes of archaeometric analysis and conservation. 1. Introduction: chemistry, mineralogy and texture of vitreous materials Glass is a solid material that does not have long-range order in the atomic arrangement, as opposed to crystalline solids having ordered atomic configurations on a lattice (Doremus, 1994; Shelby, 2005). It has been shown experimentally (Huang et al., 2012) that amorphous solids can be described adequately by the model proposed by Zachariasen, the so-called random network theory (Zachariasen, 1932). Because of the contribution of configurational entropy, glass has a higher Gibbs free energy than a solid with the same composition.
    [Show full text]