Response to Vanadate Exposure in Ochrobactrum Tritici Strains

Total Page:16

File Type:pdf, Size:1020Kb

Response to Vanadate Exposure in Ochrobactrum Tritici Strains RESEARCH ARTICLE Response to vanadate exposure in Ochrobactrum tritici strains Mariana Cruz Almeida, Rita Branco, Paula V. MoraisID* CEMMPRE, Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Vanadium is a transition metal that has been added recently to the EU list of Raw Critical a1111111111 Metals. The growing needs of vanadium primarily in the steel industry justify its increasing economic value. However, because mining of vanadium sources (i. e. ores, concentrates and vanadiferous slags) is expanding, so is vanadium environmental contamination. Bio- leaching comes forth as smart strategy to deal with supply demand and environmental con- OPEN ACCESS tamination. It requires organisms that are able to mobilize the metal and at the same time Citation: Almeida MC, Branco R, Morais PV (2020) are resistant to the leachate generated. Here, we investigated the molecular mechanisms Response to vanadate exposure in Ochrobactrum underlying vanadium resistance in Ochrobactrum tritici strains. The highly resistant strain tritici strains. PLoS ONE 15(2): e0229359. https:// doi.org/10.1371/journal.pone.0229359 5bvl1 was able to grow at concentrations > 30 mM vanadate, while the O. tritici type strain only tolerated < 3 mM vanadate concentrations. Screening of O. tritici single mutants (chrA, Editor: Fanis Missirlis, Cinvestav, MEXICO chrC, chrF and recA) growth during vanadate exposure revealed that vanadate resistance Received: November 6, 2019 was associated with chromate resistance mechanisms (in particular ChrA, an efflux pump Accepted: February 4, 2020 and ChrC, a superoxide dismutase). We also showed that sensitivity to vanadate was corre- Published: February 24, 2020 lated with increased accumulation of vanadate intracellularly, while in resistant cells this was not found. Other up-regulated proteins found during vanadate exposure were ABC trans- Copyright: © 2020 Almeida et al. This is an open access article distributed under the terms of the porters for methionine and iron, suggesting that cellular responses to vanadate toxicity may Creative Commons Attribution License, which also induce changes in unspecific transport and chelation of vanadate. permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction Data Availability Statement: All relevant data are within the manuscript. Vanadium (V) is a transition metal, which can exist in two oxidation states at neutral pH: V 2 Funding: This work was supported by CEMMPRE (IV) (vanadyl ion, cationic species VO ) and V(V) (vanadate ion, anionic species H2VO4) [1]. and by FundacËão para a Ciência e a Tecnologia With an abundance of 0.013%, vanadium is considered a relatively abundant element on Earth (FCT, https://www.fct.pt/) under the projects UID/ and a very valuable resource for different industrial applications. In fact, 80% of all V produced EMS/00285/2013, PTW-PTDC/AAG-REC/3839/ worldly is being used as an additive for steel industry [2]. 2014, ERA-MIN/0002/2015 and POCI-01-0145- Vanadium primary resources come from ores, concentrates and vanadiferous slags and are FEDER-031820. MCA has a postdoctoral grant within the project Renature - Centro-01-0145- mainly mined in South Africa, China, Russia, and the USA [2]. Recently, the European Union FEDER-000007. The funders had no role in study (EU) has published the third list of Critical Raw Materials where vanadium is listed as critical design, data collection and analysis, decision to for the EU economy. A critical metal is defined as one whose lack of availability during a publish, or preparation of the manuscript. national emergency would affect the economic and defensive capabilities of that country [3]. Competing interests: The authors have declared Because vanadium is being extensively used not only for the traditional steel, automobile that no competing interests exist. and aviation industries but also in the newest vanadium redox flow batteries, its supply PLOS ONE | https://doi.org/10.1371/journal.pone.0229359 February 24, 2020 1 / 14 Bacterial response to vanadate demands will undoubtedly increase further. New technologies are welcome to recover and recirculate vanadium from materials at the end of use. Bioleaching is an accepted strategy that requires organisms able to mobilize the metal and at the same, time resistant to the leachate generated. Besides, the use of organisms able to accumulate vanadium, either intracellularly or on the surface of cell membranes, could enhance the vanadium recovery process. During the last two decades, microbial metal accumulation has received increased attention due to the potential use of microbes as ªmetal living factoriesº, for metal uptake, transforma- tion and accumulation [4, 5]. Metal accumulation can occur in two ways: i) by metabolism- independent passive sorption; ii) by metabolism-dependent active uptake. This energy-driven process dependent on active metabolism normally occurs when an element is absorbed in a faster rate and then retained by an organism (bioaccumulation). Intracellular accumulation is especially important for essential metals. However, non-essential metals can also be taken up due to similar chemistry to essential ones [4]. Vanadium toxicity is comparable to that of lead, mercury and arsenic [6]. Nevertheless, V (III), V(IV) and V(V) species are of biological relevance and nature has evolved several enzy- matic systems using vanadium in their active sites as relevant components for their function including vanadium-dependent haloperoxidases, nitrogenases and vanabins [7]. On the other 3- 3- hand, by mimicking the phosphate ion (PO4 ), vanadate (VO4 ) can form transition-state analogues of phospho-protein intermediaries and therefore can easily substitute for phosphate in enzymes such as phosphatases and kinases [8]. A restricted number of bacteria can employ vanadium in varying biological functions. Vanadium nitrogenases have been reported in bacterial strains belonging to the genus Azoto- bacter and in cyanobacteria of the genera Anabaena and Nostoc [9, 10]. Vanadate-dependent haloperoxidases have been found in bacteria such as Streptomyces and marine cyanobacteria [11]. Several studies have reported that bacteria of the genera Shewanella, Pseudomonas and Geobacter can use vanadate as a primary electron acceptor in respiration [12±15]. Moreover, vanadium oxidation forms as vanadate and vanadyl ions can complex with carboxylate, cate- cholate and hydroxamate ligands present in siderophores [16]. Vanadium resistant microorganisms have been isolated from environmental contaminated sites such as phytoremediation plants (up to 30 mM Na3VO4), V mining-impacted soils [17] and the intestine of the vanadium-rich ascidian Ascidia sydneiensis samea (10 mM Na3VO4) [18±20]. However, the molecular mechanisms underlying vanadium resistance in microorganisms are still poorly understood. Only a study in P. aeruginosa described the importance of an efflux pump, MexGHI-OpmD, for the bacterial resistance to vanadium [21]. However, it is not known whether this is a direct or indirect effect since this pump exerts other cellular roles [21, 22]. This work aimed to determine whether vanadate resistance in Ochrobactrum tritici strains is related to low uptake of the metal or due to the presence of efflux systems (or both). Consid- 3- 3- ering the chemical structure vanadate (VO4 ) and its similarity to arsenate (AsO4 ), it could be supposed that bacteria could use arsenate-detoxifying mechanisms to detoxify vanadate. To examine this possibility, two strains of Ochrobactrum tritici, the type strain SCII24T (resistant to both arsenate and arsenite) and 5bvl1 (less resistant to arsenate and sensitive to arsenite) were used to test the vanadate resistance. Notably, the assays to define the tolerance to vana- date by the arsenite and arsenate resistant strain SCII24T showed a vanadate sensitive profile, which questioning the involvement of the arsenite/arsenate resistance genetic determinants in vanadate resistance. Considering that vanadium and chromium are transition metals, neigh- bors of the fourth period of the periodic table, in this work, we hypothesize that vanadate resis- tance mechanism could be correlated with chromate resistance mechanisms (in particular ChrA efflux pump). Therefore, the bacterial sensitivity to vanadate could be due to PLOS ONE | https://doi.org/10.1371/journal.pone.0229359 February 24, 2020 2 / 14 Bacterial response to vanadate accumulation of vanadate intracellularly, while resistant cells would possess a vanadate export mechanism as a detoxification strategy. Materials and methods Media and growth conditions Bacterial strains used in this study are listed in Table 1, and their resistance to chromate, arse- nate and arsenite, already studied in previous works are specified. Strain 5bvl1 was previously isolated from activated sludge in a chromium-contaminated area [23], while type strain SCII24T was isolated from rhizosphere of wheat [24]. Minimum inhibitory concentration (MIC) assays Minimum inhibitory concentration (MIC) determination was performed in solid R2A plates. Briefly, 20 μl of cellular suspensions (108 CFU/ml), prepared in NaCl 0.9%, were placed onto agar R2A medium plates containing increased concentrations of vanadate (0, 3, 7.5, 15 and 30 mM) and incubated for 24 h at 30 ÊC (until growth was observed in control
Recommended publications
  • Sea Squirt Symbionts! Or What I Did on My Summer Vacation… Leah Blasiak 2011 Microbial Diversity Course
    Sea Squirt Symbionts! Or what I did on my summer vacation… Leah Blasiak 2011 Microbial Diversity Course Abstract Microbial symbionts of tunicates (sea squirts) have been recognized for their capacity to produce novel bioactive compounds. However, little is known about most tunicate-associated microbial communities, even in the embryology model organism Ciona intestinalis. In this project I explored 3 local tunicate species (Ciona intestinalis, Molgula manhattensis, and Didemnum vexillum) to identify potential symbiotic bacteria. Tunicate-specific bacterial communities were observed for all three species and their tissue specific location was determined by CARD-FISH. Introduction Tunicates and other marine invertebrates are prolific sources of novel natural products for drug discovery (reviewed in Blunt, 2010). Many of these compounds are biosynthesized by a microbial symbiont of the animal, rather than produced by the animal itself (Schmidt, 2010). For example, the anti-cancer drug patellamide, originally isolated from the colonial ascidian Lissoclinum patella, is now known to be produced by an obligate cyanobacterial symbiont, Prochloron didemni (Schmidt, 2005). Research on such microbial symbionts has focused on their potential for overcoming the “supply problem.” Chemical synthesis of natural products is often challenging and expensive, and isolation of sufficient quantities of drug for clinical trials from wild sources may be impossible or environmentally costly. Culture of the microbial symbiont or heterologous expression of the biosynthetic genes offers a relatively economical solution. Although the microbial origin of many tunicate compounds is now well established, relatively little is known about the extent of such symbiotic associations in tunicates and their biological function. Tunicates (or sea squirts) present an interesting system in which to study bacterial/eukaryotic symbiosis as they are deep-branching members of the Phylum Chordata (Passamaneck, 2005 and Buchsbaum, 1948).
    [Show full text]
  • Vanadium in Biosphere and Its Role in Biological Processes
    Biological Trace Element Research https://doi.org/10.1007/s12011-018-1289-y Vanadium in Biosphere and Its Role in Biological Processes Deepika Tripathi1 & Veena Mani1 & Ravi Prakash Pal1 Received: 9 July 2017 /Accepted: 26 February 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity- related study of vanadium in a biological system. Keywords Metabolic role . Insulin-mimetic . Biological function . Vanadium Introduction essential elements^ which include aluminum (Al), arsenic (As), cobalt (Co), chromium (Cr), fluorine (F), molybdenum Minerals are inorganic elements, without carbon, found in (Mo), nickel (Ni), silicon (Si), tin (Sn), and vanadium (V) [4].
    [Show full text]
  • Ecological Aspects of the Ascidian Community Along the Israeli Coasts
    Ecological aspects of the ascidian community along the Israeli coasts THESIS SUBMITTED FOR THE DEGREE “DOCTOR OF PHILOSOPHY” BY Noa Shenkar SUBMITTED TO THE SENATE OF TEL-AVIV UNIVERSITY February 2008 This work was carried out under the supervision of Prof. Yossi Loya This work is dedicated with enormous love to Dror & little Ido תודות Acknowledgments I would like to express my gratitude to many people who helped me during this research. לפרופ' יוסי לויה שזכיתי להיות תלמידתו ולימד אותי מלבד אקולוגיה וביולוגיה ימית גם דבר או שניים על איך להיות בן - אדם. לחברי הועדה המלווה: פרופ' הודי בניהו, פרופ' יאיר אחיטוב ופרופ' אלי גפן שתמכו וייעצו ודלתם תמיד היתה פתוחה בפני . לד"ר אסתי וינטר שלימדה אותי לראות את הטוב בכל דבר . לפרופ' לב פישלזון שהתמזל מזלי להיות שכנתו ולימד אותי מהי זואולוגיה. To my colleagues abroad: To Charlie & Gretchen Lambert for their enthusiasm and love to ascidians. To Patricia Mather (née Kott) for her advice and support. To Elsa Vàzquez Otero, Rosana Moreira da Rocha and Françoise Monniot for teaching me ascidian taxonomy with great love and care. To Xavier Turon for his constructive remarks and to Amy Driskell for helping me with the PCR game. לחברי מעבדתי שליוו אותי לאורך השנים ועזרו בכל עת, ובמיוחד לעומרי בורנשטיין, אלן דניאל, מיה ויזל, עידו מזרחי, רועי סגל, רן סולם ומיכה רוזנפלד. לחברי מעבדת בניהו, יעל זלדמן, מתי הלפרין, ענבל גינסבורג ועידו סלע שתמיד יצאו בשמחה למשימות דיגום איצטלנים מולחברי עבדתו של פרופ' מיכה אילן על החברה והעוגיות . לד"ר איציק בריקנר על החתכים ההיסטולוגים המופלאים, ורדה ווכסלר על הגרפיקה, נעמי פז על העריכה וההגהה, אלכס שלגמן על העזרה הלבבית עם האוספים, וענת גלזר מחברת החשמל.
    [Show full text]
  • Vanadate and Peroxovanadate Complexes of Biomedical Relevance – a Speciation Approach with Focus on Diabetes
    Vanadate and Peroxovanadate Complexes of Biomedical Relevance – A speciation approach with focus on diabetes András Gorzsás Department of Chemistry Inorganic Chemistry Umeå University Umeå, Sweden Akademisk avhandling som med tillstånd av rektorsämbetet vid Umeå Universitet för erhållande av Filosofie Doktorsexamen framlägges till offentlig granskning vid Kemiska institutionen, sal KB3A9, KBC–huset, fredagen den 22 april 2005, kl 13.00. Fakultetsopponent: Professor Carlos F. G. C. Geraldes, Department of Biochemistry, Faculty of Science and Technology, University of Coimbra, P. O. Box 3126, P – 3001 – 401 Coimbra, Portugal i TITLE Vanadate and Peroxovanadate Complexes of Biomedical Relevance – A speciation approach with focus on diabetes AUTHOR András Gorzsás ADDRESS Department of Chemistry, Inorganic Chemistry, Umeå University, SE – 901 87 Umeå, Sweden ABSTRACT Diabetes mellitus is one of the most threatening epidemics of modern times with rapidly increasing incidence. Vanadium and peroxovanadium compounds have been shown to exert insulin–like actions and, in contrast to insulin, are orally applicable. However, problems with side–effects and toxicity remain. The exact mechanism(s) by which these compounds act are not yet fully known. Thus, a better understanding of the aqueous chemistry of vanadates and peroxovanadates in the presence of various (bio)ligands is needed. The present thesis summarises six papers dealing mainly with aqueous speciation in different vanadate – and peroxovanadate – ligand systems of biological and medical relevance. Altogether, five ligands have been studied, including important blood constituents (lactate, citrate and phosphate), a potential drug candidate (picolinic acid), and a dipeptide (alanyl serine) to model the interaction of (peroxo)vanadate in the active site of enzymes. Since all five ligands have been studied both with vanadates and peroxovanadates, the number of systems described in the present work is eleven, including the vanadate – citrate – lactate mixed ligand system.
    [Show full text]
  • And Transcriptomic-Profiling of the Host-Associated Cyanobacteria Prochloron and Acaryochloris Marina
    The ISME Journal (2018) 12, 556–567 © 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18 www.nature.com/ismej ORIGINAL ARTICLE In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina Lars Behrendt1,2,3, Jean-Baptiste Raina4, Adrian Lutz5, Witold Kot6, Mads Albertsen7, Per Halkjær-Nielsen7, Søren J Sørensen3, Anthony WD Larkum4 and Michael Kühl2,4 1Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland; 2Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark; 3Microbiology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark; 4Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia; 5Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia; 6Department of Environmental Science—Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark and 7Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendo- symbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable,
    [Show full text]
  • Universidade Do Algarve
    UNIVERSIDADE DO ALGARVE INTERACTION OF VANADIUM COMPOUNDS WITH DNA Nataliya Butenko Dissertação para obtenção do Grau de Doutor em Química Trabalho efetuado sob a orientação de: Prof. Doutora Isabel Maria Palma Antunes Cavaco 2013 Interaction of Vanadium Compounds with DNA Declaração de autoria de trabalho Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída: Copyright por Nataliya Butenko, estudante do Universidade do Algarve. A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. "Whatever you are, or whatever has happened, just be glad. Be glad because you are here. You are here in a beautiful world; and all that is beautiful may be found in this world... Just be glad, and you always will be glad. You will always have better reason to be glad. You will have more and more things to make you glad. For great is the power of sunshine, especially human sunshine. It can change anything, transform anything, remake anything, and cause anything to be become as beautiful as itself. Just be glad and your fate will change; a new life will begin and a new future will dawn for you".
    [Show full text]
  • Culture-Dependent Microbiome of the Ciona Intestinalis Tunic: Isolation, Bioactivity Profiling and Untargeted Metabolomics
    microorganisms Article Culture-Dependent Microbiome of the Ciona intestinalis Tunic: Isolation, Bioactivity Profiling and Untargeted Metabolomics Caroline Utermann 1 , Vivien A. Echelmeyer 1, Martina Blümel 1 and Deniz Tasdemir 1,2,* 1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; [email protected] (C.U.); [email protected] (V.A.E.); [email protected] (M.B.) 2 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany * Correspondence: [email protected]; Tel.: +49-431-600-4430 Received: 29 September 2020; Accepted: 3 November 2020; Published: 5 November 2020 Abstract: Ascidians and their associated microbiota are prolific producers of bioactive marine natural products. Recent culture-independent studies have revealed that the tunic of the solitary ascidian Ciona intestinalis (sea vase) is colonized by a diverse bacterial community, however, the biotechnological potential of this community has remained largely unexplored. In this study, we aimed at isolating the culturable microbiota associated with the tunic of C. intestinalis collected from the North and Baltic Seas, to investigate their antimicrobial and anticancer activities, and to gain first insights into their metabolite repertoire. The tunic of the sea vase was found to harbor a rich microbial community, from which 89 bacterial and 22 fungal strains were isolated. The diversity of the tunic-associated microbiota differed from that of the ambient seawater samples, but also between sampling sites. Fungi were isolated for the first time from the tunic of Ciona. The proportion of bioactive extracts was high, since 45% of the microbial extracts inhibited the growth of human pathogenic bacteria, fungi or cancer cell lines.
    [Show full text]
  • Novel Vanadium-Binding Proteins (Vanabins) Identified In
    VanabinP, a novel vanadium-binding protein in the blood plasma of an ascidian, Ascidia sydneiensis samea Masao Yoshihara, Tatsuya Ueki, Takahiro Watanabe, Nobuo Yamaguchi#, Kei Kamino$, and Hitoshi Michibata* Molecular Physiology Laboratory, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, #Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima 2445, Hiroshima 722-0073, Japan, and $Marine Biotechnology Institute Co., Ltd.. 3-75-1 Heita, Kamaishi City, Iwate 026-0001, Japan * To whom correspondence should be addressed. Tel & FAX +81-82-424-7438, E-mail: [email protected] Keywords: Ascidian; Vanadium; Metal accumulation, Blood plasma 1 Abstract Some ascidians accumulate high levels of the transition metal vanadium in their blood cells. The process of vanadium accumulation has not yet been elucidated. In this report, we describe the isolation and cDNA cloning of a novel vanadium-binding protein, designated as VanabinP, from the blood plasma of the vanadium-rich ascidian, Ascidia sydneiensis samea. The predicted amino acid sequence of VanabinP was highly conserved and similar to those of other Vanabins. The N-terminus of the mature form of VanabinP was rich in basic amino acid residues. VanabinP cDNA was originally isolated from blood cells, as were the other four Vanabins. However, Western blot analysis revealed that the VanabinP protein was localized to the blood plasma and was not detectable in blood cells. RT-PCR analysis and in situ hybridization indicated that the VanabinP gene was transcribed in some cell types localized to peripheral connective tissues of the alimentary canal, muscle, blood cells, and a portion of the branchial sac.
    [Show full text]
  • The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds
    Chem. Rev. 2004, 104, 849−902 849 The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds Debbie C. Crans,* Jason J. Smee, Ernestas Gaidamauskas, and Luqin Yang Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 Received June 6, 2003 Contents 4.2. Ribonuclease 866 4.2.1. Structural Characterization of Model 867 1. Introduction 850 Compounds for Inhibitors of Ribonuclease 2. Aqueous V(V) Chemistry and the 851 − 4.2.2. Characterization of the 867 Phosphate Vanadate Analogy Nucleoside-Vanadate Complexes that 2.1. Aqueous V(V) Chemistry 851 Form in Solution and Inhibit Ribonuclease 2.2. Mimicking Cellular Metabolites: 852 4.2.3. Vanadium−Nucleoside Complexes: 868 Vanadate−Phosphate Analogy Functional Inhibitors of Ribonuclease (Four-Coordinate Vanadium) 4.3. Other Phosphorylases 868 2.3. Structural Model Studies of Vanadate Esters 852 4.4. ATPases 869 2.4. Vanadate Esters: Functional Analogues of 853 4.4.1. Structural Precedence for the 869 Phosphate Esters Vanadate−Phosphate Anhydride Unit: 2.5. Vanadate Anhydrides: Structural Analogy 854 Five- or Six-Coordinate Vanadium with Condensed Phosphates 4.4.2. Vanadate as a Photocleavage Agent for 870 2.6. Potential Future Applications of 855 ATPases Vanadium-Containing Ground State Analogues in Enzymology 5. Amavadine and Siderophores 871 3. Haloperoxidases: V(V) Containing Enzymes and 855 5.1. Amavadine 871 Modeling Studies 5.1.1. Amavadine: Structure 871 3.1. Bromoperoxidase 855 5.1.2. Amavadine: Activities and Roles 872 3.2. Chloroperoxidase 856 5.2. Siderophores 873 3.3. From Haloperoxidases to Phosphatases 857 5.2.1.
    [Show full text]
  • Copyright by Elisa Tomat 2007
    Copyright by Elisa Tomat 2007 The Dissertation Committee for Elisa Tomat Certifies that this is the approved version of the following dissertation: Transition Metal Complexes of Expanded Porphyrins Committee: Jonathan L. Sessler, Supervisor Alan H. Cowley John T. McDevitt David W. Hoffman John T. Markert Transition Metal Complexes of Expanded Porphyrins by Elisa Tomat, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of philosophy The University of Texas at Austin May, 2007 Siamo chimici cioè cacciatori […]. Non ci si deve mai sentire disarmati: la natura è immensa e complessa, ma non è impermeabile all’intelligenza; devi girarle attorno, pungere, sondare, cercare il varco o fartelo. We are chemists, that is, hunters […]. We must never feel disarmed: nature is immense and complex, but it is not impermeable to the intelligence; we must circle around it, poke and probe, find the passage or make it. Primo Levi, Il Sistema Periodico, Einaudi: Torino, 1975 (Translated by E. Tomat) Acknowledgements I am grateful to my advisor, Professor Jonathan Sessler, for his support and encouragement during the journey described in this doctoral Dissertation. Thank you, Jonathan, for your guidance through scientific and non-scientific matters, for your rigor in editing the manuscripts that we coauthored, and for the enthusiasm with which you helped me pursue my future career steps. A large group of extraordinary people collaborated to make my doctoral studies a truly enlightening experience. Throughout the years, the Sessler group has been a diverse and stimulating community and it has been a privilege to be part of it.
    [Show full text]
  • King's Research Portal
    King’s Research Portal DOI: 10.1039/C8MT00078F Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Thompson, E. D., Hogstrand, C., & Glover, C. N. (2018). From sea squirts to squirrelfish: facultative trace element hyperaccumulation in animals. Metallomics. https://doi.org/10.1039/C8MT00078F Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Inorganic Chemistry of Vanadium
    Vanadium Hitoshi Michibata Editor Vanadium Biochemical and Molecular Biological Approaches 123 Editor Hitoshi Michibata Department of Biological Science Graduate School of Science Hiroshima University 1-3-1 Kagamiyama Higashihiroshima 739-8526 Japan [email protected] ISBN 978-94-007-0912-6 e-ISBN 978-94-007-0913-3 DOI 10.1007/978-94-007-0913-3 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2011937453 © Springer Science+Business Media B.V. 2012 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Publishing the book “Vanadium: Biochemical and Molecular Biological Approaches” is particularly timed. It becomes exactly 100 years since Professor Martin Henze first reported high levels of vanadium in the blood cells of an ascidian (tunicate) collected in the Gulf of Naples in 1911. Subsequently, his discovery had a great influence not only on analytical, natural product, organic and inorganic chemistry but also on physiology, biochemistry and molecular biology. Vanadium, atomic number 23, is one of the most interesting transition elements. Average of its crustal abundance is estimated to be 100 g/g, which is approximately twice that of copper, 10 times that of lead, and 100 times that of molybdenum (Nriagu 1998).
    [Show full text]