Machine Learning Classification of Microbial Community Compositions to Predict Anthropogenic Pollutants in the Baltic Sea

Total Page:16

File Type:pdf, Size:1020Kb

Machine Learning Classification of Microbial Community Compositions to Predict Anthropogenic Pollutants in the Baltic Sea Machine learning classification of microbial community compositions to predict anthropogenic pollutants in the Baltic Sea Kumulative Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock vorgelegt von René Janßen, geb. am 12.9.1986 in Goch aus Rostock Rostock, 18.09.2020 https://doi.org/10.18453/rosdok_id00002897 Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. Gutachter: Prof. Dr. Matthias Labrenz, Leibniz-Institut für Ostseeforschung Warnemünde, Sektion Biologische Meereskunde Prof. Dr. Rudolf Amann, Bremen, Max-Planck-Institut für Marine Mikrobiologie, Abteilung Molekulare Ökologie Prof. Dr. Alexander Probst, Universität Duisburg-Essen, Fachbereich Umweltmikrobiologie und Biotechnologie Ass.-Prof. Stephen Techtmann, PhD, Houghton, Michigan Technological University, Department of Biological Sciences Jahr der Einreichung: 2020 Jahr der Verteidigung: 2020 Table of contents Summary .............................................................................................................................. 1 Zusammenfassung .............................................................................................................. 3 General introduction ........................................................................................................... 6 Formation of Earth and life ................................................................................................. 6 Bacterial lifestyles and strategies ....................................................................................... 7 Reactions of microbial communities towards changing environments ................................ 7 Accessing microbial communities via next generation sequencing ..................................... 9 Microbiological data sets have specific characteristics ..................................................10 Machine learning to classify microbial community compositions .......................................11 Shallow and deep machine learning algorithms .............................................................13 Variable importance and interpretable models ...............................................................17 Clustering, classification and regression tasks for models .............................................17 Pollution of the Baltic Sea .................................................................................................18 Monitoring the environmental state of the Baltic Sea .........................................................19 Description of research aims ............................................................................................20 Conducted experiments and analyses ..............................................................................22 Summary of published papers ..........................................................................................23 General discussion ............................................................................................................24 Machine learning algorithms utilized non-i.i.d. sequencing data for accurate predictions ..24 Variable importance is a precondition to determine indicative microbial fingerprints ......27 Shotgun sequencing requires careful experimental design to support analyses ............30 Disturbed communities displayed resistance and resilience ..........................................31 Random Forest is preferable to Artificial Neural Networks .............................................32 Phyloseq2ML: an R package facilitates machine learning with microbial communities ..37 Applying sequencing data and machine learning analysis to monitoring ...........................37 Microbial communities may inform additionally to parameter prediction .........................37 Microbial monitoring requires specific collection and storage of samples ......................41 Selecting appropriate algorithms for integration with environmental monitoring .............42 Conclusion and outlook .....................................................................................................43 Chapter I: An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts .....................45 Abstract ............................................................................................................................46 1.1 Introduction ............................................................................................................47 1.2 Material and methods .............................................................................................49 1.2.1 Laboratory & sampling ....................................................................................49 1.2.2 Machine learning .............................................................................................51 1.3 Results ...................................................................................................................56 1.3.1 ANN identifies glyphosate-treated microbial communities ...............................56 1.3.2 Identification of clusters present in successful classifications by the ANN .......57 1.3.3 Exploring the limits and assembling a highly indicative selection .....................60 1.3.4 Comparing the use of 16S rRNA gene - vs. 16S rRNA-derived data ...............62 1.4 Discussion ..............................................................................................................62 1.4.1 A statistical approach to identifying decision-important clusters ......................63 1.4.2 More observations should be generated..........................................................65 1.4.3 The outcome of the ANN was confirmed by bioinformatic analysis ..................66 1.4.4 Concluding further steps in the application of ANN with NGS ..........................66 Chapter II: A glyphosate pulse to brackish long-term microcosms has a greater impact on the microbial diversity and abundance of planktonic than of biofilm assemblages 68 Abstract ............................................................................................................................69 2.1 Introduction ............................................................................................................70 2.2 Material and methods .............................................................................................71 2.2.1 Experimental setup .........................................................................................71 2.2.2 Sampling procedure ........................................................................................71 2.2.3 Determination of total cell counts.....................................................................72 2.2.4 Significance testing applied to total cell counts ................................................72 2.2.5 Nutrient analysis ..............................................................................................72 2.2.6 Glyphosate and AMPA analysis ......................................................................72 2.2.7 Nucleic acid extraction and sequencing...........................................................73 2.2.8 Bioinformatic and statistical analysis of the amplicon data ..............................74 2.2.9 Metagenomic analysis .....................................................................................75 2.2.10 Functional tree calculation ...............................................................................75 2.3 Results ...................................................................................................................75 2.3.1 Total cell counts, glyphosate and AMPA concentrations and nutrients ............75 2.3.2 16S rRNA and rRNA gene based community compositions ............................77 2.3.3 NMDS ordination .............................................................................................78 2.3.4 Alpha diversity measures ................................................................................80 2.3.5 OTUs increasing in abundance after glyphosate treatment .............................81 2.3.6 Duration of the detected signals ......................................................................82 2.3.7 Distribution of glyphosate degradation genes in metagenomic samples ..........83 2.4 Discussion ..............................................................................................................87 2.4.1 Potential impacts of glyphosate on a brackish microbial ecosystem ................87 2.4.2 Differences in the responses to glyphosate addition ........................................88 2.4.3 Glyphosate-induced changes in OTU abundance ...........................................89 2.4.4 Probability of glyphosate degradation ..............................................................89 2.5 Data availability statement ......................................................................................91 Chapter III: Machine learning predicts the presence of 2,4,6-trinitrotoluene in sediments of a Baltic Sea munitions dumpsite using microbial community compositions ............92 Abstract ............................................................................................................................94 3.1 Introduction ............................................................................................................95
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Metagenomics Revealing Molecular Pro Ling of Microbial Community
    Metagenomics Revealing Molecular Proling of Microbial Community Structure and Metabolic Capacity In Bamucuo, Tibet Cai Wei Shanghai Ocean University Dan Sun Shanghai Ocean University Wenliang Yuan Jiaxing University Lei Li Fudan University Chaoxu Dai Shanghai Ocean University Zuozhou Chen Shanghai Ocean University Xiaomin Zeng Central South University Xiangya Public Health School Shihang Wang Shanghai Ocean University Yifan Tang Hunan Normal University School of Medicine Shouwen Jiang Shanghai Ocean University Zhichao Wu Shanghai Ocean University Xiaoning Peng Hunan Normal University School of Medicine Linhua Jiang Fudan University Sihua peng ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0001-7231-666X Research Page 1/36 Keywords: shotgun metagenomics, microbial community, extreme environment, Tibet, Qinghai-Tibet Plateau Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-505014/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/36 Abstract Background: The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and the microorganisms there play vital ecological roles in the global biogeochemical cycle; however, detailed information on the microbial communities in QTP is still lacking. Results: Here, we performed a landscape survey of the microorganisms in Bamucuo, Tibet, resulting in 160,212 (soil) and 135,994 (water) contigs by shotgun metagenomic methods, and generated 75 nearly complete metagenome-assembled genomes (MAGs). Proteobacteria, Actinobacteria and Firmicutes were found to be the three most dominant bacterial phyla, while Euryarchaeota was the most dominant archaeal phylum. Surprisingly, Pandoravirus salinus was found in the soil microbial community.
    [Show full text]
  • Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs
    microorganisms Article Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs Steven B. Kuzyk, Elizabeth Hughes and Vladimir Yurkov * Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] (S.B.K.); [email protected] (E.H.) * Correspondence: [email protected] Abstract: Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+,V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments. Citation: Kuzyk, S.B.; Hughes, E.; Yurkov, V.
    [Show full text]
  • Supplementary Fig. 5
    PFspades_M3_96_0.952241;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M3_6315;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M3_102_1.274286;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M2_93_1.298496;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M4_5440;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NAPFspades_M4_75_1.305007;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA 0.999 A Matam_M3_6487;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M2_97_0.823083;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA 0.841 0.876 Matam_M3_5437;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86Matam_M3_5438;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA clade;NA;NA 0.787 Matam_M2_1930;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_3768;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_1904;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1678;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1258;Bacteria;Proteobacteria;Alphaproteobacteria;NA;NA;NA Matam_M4_1919;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_1916;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA 1.000 Matam_M2_1974;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1403;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas
    [Show full text]
  • Bchb D Bacteria P Cyanobacteria C Cyanobacteriia O Synechococcales F Prochlorotrichaceae G Prochlorothrix S Prochlorothrix Hollandica WGS ID ANKN01 1/1-488
    Tree scale: 0.1 bchZ d Bacteria p Eremiobacterota c Eremiobacteria o UBP12 f UBA5184 g BOG-1502 s BOG-1502 sp003134035 WGS ID PLAE01 1/1-377 0.84 bchZ GCA 000019165.1 ASM1916v1 protein ABZ83897.1 chlorophyllide reductase subunit z Heliobacterium modesticaldum Ice1 /1-442 0.89 bchZ d Bacteria p Acidobacteriota c Blastocatellia o Chloracidobacteriales f Chloracidobacteriaceae g Chloracidobacterium s Chloracidobacterium thermophilum A WGS ID LMXM01 1/3-449 1.00 bchZ GCA 000226295.1 ASM22629v1 protein AEP12277.1 chlorophyllide reductase subunit Z Chloracidobacterium thermophilum B /3-448 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Roseiflexaceae g Kouleothrix s Kouleothrix aurantiaca WGS ID LJCR01 1/3-438 1.00 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Roseiflexaceae g UBA965 s UBA965 sp002292925 WGS ID DBCF01 1/3-464 0.79 bchZ GCA 000017805.1 ASM1780v1 protein ABU59783.1 chlorophyllide reductase subunit Z Roseiflexus castenholzii DSM 13941 /3-462 1.00 bchZ GCA 000016665.1 ASM1666v1 protein ABQ91617.1 chlorophyllide reductase subunit Z Roseiflexus sp. RS-1 /3-455 0.98 0.90 bchZ d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g UBA1466 s UBA1466 sp002325605 WGS ID DCSM01 1/1-455 bchZ GCA 000022185.1 ASM2218v1 protein ACM55469.1 chlorophyllide reductase subunit Z Chloroflexus sp. Y-400-fl /3-458 1.00 0.52 bchZ GCA 000018865.1 ASM1886v1 protein ABY36984.1 chlorophyllide reductase subunit Z Chloroflexus aurantiacus J-10-fl /3-460 0.99 bchZ d Bacteria p Chloroflexota c Chloroflexia
    [Show full text]
  • Summer Marine Bacterial Community Composition of the Western Antarctic Peninsula
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-26-2021 Summer Marine Bacterial Community Composition of the Western Antarctic Peninsula Codey Phoun Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Bioinformatics Commons SUMMER MARINE BACTERIAL COMMUNITY COMPOSITION OF THE WESTERN ANTARCTIC PENINSULA Summer Marine Bacterial Community Composition of the Western Antarctic Peninsula A Project Presented to the Department of Computer Science San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Codey Phoun May 2021 SUMMER MARINE BACTERIAL COMMUNITY COMPOSITION OF THE WESTERN ANTARCTIC PENINSULA ABSTRACT The Western Antarctic Peninsula has experienced dramatic warming due to climate change over the last 50 years and the consequences to the marine microbial community are not fully clear. The marine bacterial community are fundamental contributors to biogeochemical cycling of nutrients and minerals in the ocean. Molecular data of bacteria from the surface waters of the Western Antarctic Peninsula are lacking and most existing studies do not capture the annual variation of bacterial community dynamics. In this study, 15 different 16S rRNA gene amplicon samples covering 3 austral summers were processed and analyzed to investigate the marine bacterial community composition and its changes over the summer season. Between the 3 summer seasons, a similar pattern of dominance in relative community composition by the classes of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes was observed. Alphaproteobacteria were mainly composed of the order Rhodobacterales and increased in relative abundance as the summer progressed. Gammaproteobacteria were represented by a wide array of taxa at the order level.
    [Show full text]
  • Microdiversity and Temporal Dynamics of Marine Bacterial Dimethylsulfoniopropionate Genes
    Environmental Microbiology (2019) 00(00), 00–00 doi:10.1111/1462-2920.14560 Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes Brent Nowinski,1 Jessie Motard-Côté,2,3 co-occurred with haptophytes. This in situ study of Marine Landa,1† Christina M. Preston,4 the drivers of DMSP fate in a coastal ecosystem Christopher A. Scholin,4 James M. Birch,4 demonstrates for the first time correlations between Ronald P. Kiene2,3 and Mary Ann Moran 1* specific groups of bacterial DMSP degraders and 1Department of Marine Sciences, University of Georgia, phytoplankton taxa. Athens, GA, 30602, USA. 2 Department of Marine Sciences, University of South Introduction Alabama, Mobile, AL, 36688, USA. 3Dauphin Island Sea Lab, Dauphin Island, AL, The phytoplankton-produced organic sulfur compound 36528, USA. dimethylsulfoniopropionate (DMSP) plays a major role in 4Monterey Bay Aquarium Research Institute, Moss marine microbial food webs as a source of reduced sulfur Landing, CA, 95039, USA. and carbon (Kiene et al., 2000), and its degradation has impacts on ocean–atmosphere sulfur flux (Andreae, 1990). Marine bacteria can catabolize DMSP using the Summary demethylation pathway, wherein sulfur is routed to metha- Dimethylsulfoniopropionate (DMSP) is an abundant nethiol and potentially incorporated into biomass; or using organic sulfur metabolite produced by many phyto- the cleavage pathway, in which case sulfur is routed to the plankton species and degraded by bacteria via two dis- gas dimethylsulfide (DMS) with implications for atmo- tinct pathways with climate-relevant implications. We spheric aerosol dynamics and cloud formation (Charlson assessed the diversity and abundance of bacteria pos- et al., 1987; Quinn and Bates, 2011).
    [Show full text]
  • Rhodobacter Ruber Sp. Nov., Isolated from a Freshwater Pond
    Rhodobacter ruber sp. nov., isolated from a freshwater pond Wen-Ming Chen National Kaohsiung College of Marine Technology: National Kaohsiung University of Science and Technology - Nanzih Campus Ting-Hsuan Chang National Kaohsiung College of Marine Technology: National Kaohsiung University of Science and Technology - Nanzih Campus Der-Shyan Sheu National Kaohsiung College of Marine Technology: National Kaohsiung University of Science and Technology - Nanzih Campus Li-Cheng Jheng National Kaohsiung University of Applied Sciences: National Kaohsiung University of Science and Technology Shih-Yi Sheu ( [email protected] ) National Kaohsiung Marine University https://orcid.org/0000-0002-4097-2037 Original Paper Keywords: Rhodobacter ruber sp, nov, Rhodobacteraceae, Rhodobacterales, Alphaproteobacteria Posted Date: February 10th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-197366/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Strain CCP-1T, isolated from a freshwater pond in Taiwan, is characterized using a polyphasic taxonomy approach. Cells of strain CCP-1T are Gram-stain-negative, aerobic, non-motile, rod-shaped and form dark red colored colonies. Growth occurs at 20–40 oC, at pH 6.5-9 and with 0-0.5% NaCl. Strain CCP-1T contains bacteriochlorophyll a, and shows optimum growth under anaerobic condition by photoheterotrophy, but not by photoautotrophy. 16S rRNA gene sequence similarity indicates that strain CCP-1T is closely related to species within the genus Rhodobacter (93.9–96.2% sequence similarity), Haematobacter (96.3%) and Xinfangfangia (95.5–96.2%). Phylogenetic analyses based on 16S rRNA gene sequences and based on up-to-date bacterial core gene set (92 protein clusters) reveal that strain CCP-1T is aliated with species in the genus Rhodobacter.
    [Show full text]
  • Supplementary Information 1 2 Population Differentiation Of
    1 Supplementary Information 2 3 Population Differentiation of Rhodobacteraceae Along Coral Compartments 4 Danli Luo, Xiaojun Wang, Xiaoyuan Feng, Mengdan Tian, Sishuo Wang, Sen-Lin Tang, Put 5 Ang Jr, Aixin Yan, Haiwei Luo 6 7 8 9 10 11 This PDF file includes: 12 Text 1. Supplementary methods 13 Text 2. Supplementary results 14 Figures S1 to S13 15 Supplementary references 16 17 Text 1. Supplementary methods 18 1.1 Coral sample collection and processing 19 1.2 Bacterial isolation 20 1.3 Genome sequencing, assembly and annotation 21 1.4 Ortholog prediction and phylogenomic tree construction 22 1.5 Analysis of population structure in core genomes 23 1.6 Inference of novel allelic replacement with external lineages in core genomes 24 1.7 Differentiation in the accessory genome and inference of evolutionary history 25 1.8 Identification of pseudogenes in the fla1 flagellar gene cluster 26 1.9 The physiological assays 27 1.10 Test of compartmentalization and dispersal limitation 28 1.11 Estimating the origin time for the Rhodobacteraceae and the Ruegeria populations 29 Text 2. Supplementary results 30 2.1 Population differentiation at the core genomes of the Ruegeria population 31 2.2 The Ruegeria population differentiation at the physiological level 32 2.3 Metabolic potential for utilizing other substrates by the mucus clade of the Ruegeria 33 population 34 2.4 Metabolic potential of the mucus clade in the Ruegeria population underlying 35 microbial interactions in the densely-populated mucus habitat 36 2.5 Adaptation of the skeleton clade in the Ruegeria population to the periodically 37 anoxic skeleton habitat 38 39 40 Text 1.
    [Show full text]
  • I Bacterial Classifications in the Genomic Era by Kevin Liang A
    ! ! #$%&'("$)!*)$++","%$&"-.+!".!&/'!0'.-1"%!2($! 34! ! 5'6".!7"$.8! ! ! ! 9!&/'+"+!+:31"&&';!".!<$(&"$)!,:),"))1'.&!-,!&/'!('=:"('1'.&+!,-(!&/'!;'8(''!-,! ! >$+&'(!-,!?%"'.%'! ".! >"%(-3"-)-84!$.;!#"-&'%/.-)-84! ! ! ! @'<$(&1'.&!-,!#"-)-8"%$)!?%"'.%'+! A."6'(+"&4!-,!9)3'(&$! ! ! ! B!5'6".!7"$.8C!DEDE! ! ! "! "#$%&'(%! ! #$%&'("$)!&$F-.-14!"+!$.!".&'8($)!<$(&!-,!$))!;"+%"<)".'+!G"&/".!&/'!,"');!-,!1"%(-3"-)-84C! $+!"&!$))-G+!('+'$(%/'(+!&-!%-11:."%$&'!('+:)&+!',,"%"'.&)4C!+&('$1)".".8!8)-3$)!%-))$3-($&"-.H!I/'! :)&"1$&'!8-$)!-,!3$%&'("$)!&$F-.-14!"+!&-!%('$&'!8(-:<+!-,!-(8$."+1+!3$+';!.-&!-.)4!-.!+/$(';! </'.-&4<"%!$.;!8'.-1"%!&($"&+C!3:&!$)+-!$!%-11-.!'6-):&"-.$(4!/"+&-(4H!I-!$%/"'6'!&/"+!8-$)C!&/'! <-)4</$+"%!$<<(-$%/C!G/"%/!'F$1".'+!</'.-&4<"%C!8'.-1"%!$.;!</4)-8'.'&"%!;$&$C!"+!,$6-(';H! 9)&/-:8/!&/'!&/(''!1$J-(!%-1<-.'.&+!-,!<-)4</$+"%!&$F-.-14!('1$".!:.%/$.8';!+".%'!"&!G$+! ,"(+&!<(-<-+';!".!KLMNC!&/'!1'&/-;+!".!G/"%/!G'!$++'++!&/'+'!$+<'%&+!/$6'!"1<(-6';!+"8.","%$.&)4! ;:'!&-!&/'!$3:.;$.%'!-,!G/-)'!8'.-1'!+'=:'.%'+!OP0?Q!$6$")$3)'H!R.!$;;"&"-.C!P0?!/$+!$)+-! +'(6';!$+!&/'!3$+"+!,-(!;'6')-<".8!/"8/S('+-):&"-.!+:3+<'%"'+!)'6')!%)$++","%$&"-.!&'%/."=:'+H!I/'! ('+'$(%/!<('+'.&';!".!&/"+!&/'+"+!&/'(',-('!,-%:+'+!-.!3-&/!$<<)4".8!1-;'(.!&'%/."=:'+!&-!&/'! <-)4</$+"%!$<<(-$%/!&-!&$F-.-14!$.;!;'6')-<".8!$!+&$.;$(;"T';C!'$+4S&-S:+'!/"8/S('+-):&"-.! +:3+<'%"'+!&4<".8!&'%/."=:'H! ! I($;"&"-.$))4C!&/'!KM?!(UV9!8'.'!/$+!3''.!:+';!&-!$++'++!8'.-1"%!$.;!</4)-8'.'&"%! (')$&"-.+/"<+!,-(!&$F-.-1"%!<:(<-+'+H!9)&/-:8/!"&!"+!.-G!G";')4!W.-G.!&/$&!KM?!(@V9!"+!.-&!
    [Show full text]
  • Bchn GCA 000020645.1 Asm2064v1 Protein ACF42657.1 Light-Independent Protochlorophyllide Reductase N Subunit Pelodictyon Phaeocl
    bchY d Bacteria p Eremiobacterota c Eremiobacteria o UBP12 f UBA5184 g Bog-1527 s Bog-1527 sp003155175 WGS ID PMFP01 1/6-406 1.00 bchY d Bacteria p Eremiobacterota c Eremiobacteria o UBP12 f UBA5184 g BOG-1502 s BOG-1502 sp003134035 WGS ID PLAE01 1/1-392 bchY GCA 000019165.1 ASM1916v1 protein ABZ83898.1 chlorophyllide reductase 52.5 kda chain subunit y Heliobacterium modesticaldum Ice1 /4-399 0.78 bchY d Bacteria p Acidobacteriota c Blastocatellia o Chloracidobacteriales f Chloracidobacteriaceae g Chloracidobacterium s Chloracidobacterium thermophilum A WGS ID LMXM01 1/5-406 0.99 bchY GCA 000226295.1 ASM22629v1 protein AEP12321.1 chlorophyllide reductase subunit Y Chloracidobacterium thermophilum B /1-393 bchY GCA 000016665.1 ASM1666v1 protein ABQ91618.1 chlorophyllide reductase subunit Y Roseiflexus sp. RS-1 /8-398 1.00 bchY GCA 000017805.1 ASM1780v1 protein ABU59784.1 chlorophyllide reductase subunit Y Roseiflexus castenholzii DSM 13941 /8-403 0.95 bchY d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g UBA1466 s UBA1466 sp002325605 WGS ID DCSM01 1/1-395 0.89 bchY d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Chloroploca s Chloroploca asiatica WGS ID LYXE01 1/18-408 1.000.85 bchY d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Oscillochloris s Oscillochloris trichoides WGS ID ADVR01 1/17-412 0.97 bchY GCA 000152145.1 ASM15214v1 protein EFO79680.1 chlorophyllide reductase subunit Y Oscillochloris trichoides DG6 /22-417 0.98 bchY d Bacteria p Chloroflexota c Chloroflexia o Chloroflexales f Chloroflexaceae g Chloroflexus s Chloroflexus islandicus WGS ID LWQS01 1/17-417 0.71bchY GCA 000021945.1 ASM2194v1 protein ACL23771.1 chlorophyllide reductase subunit Y Chloroflexus aggregans DSM 9485 /22-423 0.91 0.54bchY GCA 000022185.1 ASM2218v1 protein ACM55468.1 chlorophyllide reductase subunit Y Chloroflexus sp.
    [Show full text]
  • Taxogenómica En Rhodobacteraceae
    Departamento de Microbiología y Ecología Colección Española de Cultivos Tipo Programa de Doctorado en Biomedicina y Biotecnología TAXOGENÓMICA EN RHODOBACTERACEAE Directores de Tesis David Ruiz Arahal Mª Jesús Pujalte Domarco Alexandra La Mura Arroyo Tesis Doctoral Valencia, Noviembre, 2019 Dr. David Ruiz Arahal, Profesor Titular del Departamento de Microbiología y Ecología de la Universidad de Valencia, y Dra. María Jesús Pujalte Domarco, Catedrática del Departamento de Microbiología y Ecología de la Universidad de Valencia, INFORMAN : Que Alexandra La Mura Arroyo, Graduada en Biología por la Universidad de Valencia, ha realizado bajo su dirección el trabajo titulado Taxogenómica en Rhodobacteraceae, y que hallándose concluida, reúne todos los requisitos para su juicio y calificación. Por tanto, autorizan su depósito, a fin de que pueda ser juzgado por el tribunal correspondiente para la obtención del grado de Doctor por la Universidad de Valencia. Y para que conste, en el cumplimiento de la legislación, firman el presente informe en Valencia, a 13 de noviembre de 2019. David Ruiz Arahal Mª Jesús Pujalte Domarco Relación de publicaciones derivadas de la presente Tesis Doctoral Esta Tesis Doctoral ha sido financiada por la Subvención para la contratación de personal investigador de carácter predoctoral (ACIF/2016/343) de la Generalitat Valenciana y el Fondo Social Europeo. Los resultados obtenidos a lo largo de la realización de la Tesis Doctoral se han presentado a través de publicaciones y comunicaciones científicas en el ámbito de la taxonomía, y son los siguientes: • Artículos: La Mura A, Arahal DR, Pujalte MJ. (2018). Roseivivax atlanticus (Li, Lai, Liu, Sun and Shao, 2015) is a later heterotypic synonym of Roseivivax marinus (Dai, Shi, Gao, Liu and Zhang, 2014).
    [Show full text]