Supplementary Fig. 5

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Fig. 5 PFspades_M3_96_0.952241;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M3_6315;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M3_102_1.274286;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M2_93_1.298496;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M4_5440;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NAPFspades_M4_75_1.305007;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA 0.999 A Matam_M3_6487;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M2_97_0.823083;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA 0.841 0.876 Matam_M3_5437;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86Matam_M3_5438;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA clade;NA;NA 0.787 Matam_M2_1930;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_3768;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_1904;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1678;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1258;Bacteria;Proteobacteria;Alphaproteobacteria;NA;NA;NA Matam_M4_1919;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_1916;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA 1.000 Matam_M2_1974;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1403;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M4_2240;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_2961;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_5808;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1484;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Alteromonadaceae;Paraglaciecola Matam_M4_2015;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_999;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M4_3504;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_3068;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_2589;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2323;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_2230;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M4_1685;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M4_4975;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2302;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_1972;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M4_2347;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2333;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86Matam_M2_2033;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA clade;NA;NA Matam_M4_3502;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_2872;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2433;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_3881;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1833;Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadales;Pseudoalteromonadaceae;Pseudoalteromonas Matam_M3_4283;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_3759;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_4039;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2326;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_5147;Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter Matam_M3_2244;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_3717;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_4360;Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Acinetobacter PFspades_M2_41_4.162450;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M3_888;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_4238;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_2232;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA PFspades_M2_78_2.252241;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M2_1251;Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonadales;Moraxellaceae;Psychrobacter Matam_M2_4506;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA PFspades_M4_74_1.627020;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA Matam_M2_1466;Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mitochondria;NA 0.6610.856 Matam_M4_2804;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA 0.717 0.739 0.689 0.995 Matam_M3_5186;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_4640;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M4_2109;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_6275;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M3_1992;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_2016;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA PFspades_M2_104_1.155617;Bacteria;Planctomycetota;Phycisphaerae;Phycisphaerales;Phycisphaeraceae;CL500−3 1.000 0.624 0.678 0.948 0.9970.512 0.740 0.590 0.580 0.953 0.855 Matam_M2_1789;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group 1.000 Matam_M2_2571;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_4442;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Spongiibacteraceae;Sinobacterium 0.981 Matam_M2_4908;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_4896;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group 0.854 Matam_M2_3883;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M3_2219;Bacteria;Proteobacteria;Gammaproteobacteria;SAR86 clade;NA;NA Matam_M2_1742;Bacteria;Proteobacteria;Gammaproteobacteria;OM182 clade;NA;NA 0.987 0.996 Matam_M3_1889;Bacteria;Proteobacteria;Gammaproteobacteria;OM182 clade;NA;NA PFspades_M4_101_2.547714;Bacteria;Proteobacteria;Gammaproteobacteria;OM182 clade;NA;NA PFspades_M2_69_1.110169;Bacteria;Planctomycetota;Planctomycetes;Pirellulales;Pirellulaceae;NA Matam_M2_4728;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade Matam_M2_3849;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group 0.929 Matam_M3_4518;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M3_3128;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Spongiibacteraceae;BD1−7 clade Matam_M2_1395;Bacteria;Proteobacteria;Gammaproteobacteria;OM182 clade;NA;NA 0.928 Matam_M3_5966;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_1848;Bacteria;Proteobacteria;Gammaproteobacteria;OM182 clade;NA;NA Matam_M2_2244;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade 0.994 0.651 Matam_M2_2168;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_5741;Bacteria;Proteobacteria;Gammaproteobacteria;Burkholderiales;Methylophilaceae;OM43 clade Matam_M2_2901;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade Matam_M2_1986;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5)Matam_M2_2596;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade clade 0.989 Matam_M4_5032;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group 0.883 0.713 Matam_M2_4411;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4Matam_M2_4425;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group marine group Matam_M2_2874;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Halioglobus Matam_M2_1892;Bacteria;Proteobacteria;Gammaproteobacteria;Burkholderiales;Methylophilaceae;OM43 clade Matam_M2_3582;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade 0.995 Matam_M2_3274;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_2684;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade 0.998 Matam_M4_3382;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group Matam_M2_2038;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5) clade Matam_M2_2904;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;Halioglobus Matam_M2_2574;Bacteria;Proteobacteria;Gammaproteobacteria;Burkholderiales;Methylophilaceae;OM43 clade Matam_M3_5729;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4Matam_M2_2573;Bacteria;Bacteroidota;Bacteroidia;Flavobacteriales;Flavobacteriaceae;NS4 marine group marine group Matam_M3_2382;Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales;Halieaceae;OM60(NOR5)
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Spatiotemporal Dynamics of Marine Bacterial and Archaeal Communities in Surface Waters Off the Northern Antarctic Peninsula
    Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula Camila N. Signori, Vivian H. Pellizari, Alex Enrich Prast and Stefan M. Sievert The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149885 N.B.: When citing this work, cite the original publication. Signori, C. N., Pellizari, V. H., Enrich Prast, A., Sievert, S. M., (2018), Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula, Deep-sea research. Part II, Topical studies in oceanography, 149, 150-160. https://doi.org/10.1016/j.dsr2.2017.12.017 Original publication available at: https://doi.org/10.1016/j.dsr2.2017.12.017 Copyright: Elsevier http://www.elsevier.com/ Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula Camila N. Signori1*, Vivian H. Pellizari1, Alex Enrich-Prast2,3, Stefan M. Sievert4* 1 Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo (USP). Praça do Oceanográfico, 191. CEP: 05508-900 São Paulo, SP, Brazil. 2 Department of Thematic Studies - Environmental Change, Linköping University. 581 83 Linköping, Sweden 3 Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ). Av. Carlos Chagas Filho, 373. CEP: 21941-902. Rio de Janeiro, Brazil 4 Biology Department, Woods Hole Oceanographic Institution (WHOI). 266 Woods Hole Road, Woods Hole, MA 02543, United States. *Corresponding authors: Camila Negrão Signori Address: Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Acidification Increases Abundances of Vibrionales And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sapientia Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency Tania Aires1,*, Alexandra Serebryakova1,2,*, Frédérique Viard2,3, Ester A. Serrão1 and Aschwin H. Engelen1 1 Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal 2 Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France 3 CNRS, UMR 7144, Divco Team, Station Biologique de Roscoff, Roscoff, France * These authors contributed equally to this work. ABSTRACT Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions Submitted 13 September 2017 (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three Accepted 26 January 2018 weeks.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Artificial Neural Network Analysis of Microbial Diversity in the Central and Southern Adriatic
    www.nature.com/scientificreports OPEN Artifcial neural network analysis of microbial diversity in the central and southern Adriatic Sea Danijela Šantić1*, Kasia Piwosz2, Frano Matić1, Ana Vrdoljak Tomaš1, Jasna Arapov1, Jason Lawrence Dean3, Mladen Šolić1, Michal Koblížek3,4, Grozdan Kušpilić1 & Stefanija Šestanović1 Bacteria are an active and diverse component of pelagic communities. The identifcation of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profle, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classifed the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more diferentiated by depth than by area, with temperature and identifed salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identifed genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium- related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors afecting picoplankton in the open sea environment.
    [Show full text]
  • Metagenomics Revealing Molecular Pro Ling of Microbial Community
    Metagenomics Revealing Molecular Proling of Microbial Community Structure and Metabolic Capacity In Bamucuo, Tibet Cai Wei Shanghai Ocean University Dan Sun Shanghai Ocean University Wenliang Yuan Jiaxing University Lei Li Fudan University Chaoxu Dai Shanghai Ocean University Zuozhou Chen Shanghai Ocean University Xiaomin Zeng Central South University Xiangya Public Health School Shihang Wang Shanghai Ocean University Yifan Tang Hunan Normal University School of Medicine Shouwen Jiang Shanghai Ocean University Zhichao Wu Shanghai Ocean University Xiaoning Peng Hunan Normal University School of Medicine Linhua Jiang Fudan University Sihua peng ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0001-7231-666X Research Page 1/36 Keywords: shotgun metagenomics, microbial community, extreme environment, Tibet, Qinghai-Tibet Plateau Posted Date: May 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-505014/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/36 Abstract Background: The Qinghai-Tibet Plateau (QTP) is the highest plateau in the world, and the microorganisms there play vital ecological roles in the global biogeochemical cycle; however, detailed information on the microbial communities in QTP is still lacking. Results: Here, we performed a landscape survey of the microorganisms in Bamucuo, Tibet, resulting in 160,212 (soil) and 135,994 (water) contigs by shotgun metagenomic methods, and generated 75 nearly complete metagenome-assembled genomes (MAGs). Proteobacteria, Actinobacteria and Firmicutes were found to be the three most dominant bacterial phyla, while Euryarchaeota was the most dominant archaeal phylum. Surprisingly, Pandoravirus salinus was found in the soil microbial community.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Supplementary Information
    Supplementary Information Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats Caroline Utermann 1, Martina Blümel 1, Kathrin Busch 2, Larissa Buedenbender 1, Yaping Lin 3,4, Bradley A. Haltli 5, Russell G. Kerr 5, Elizabeta Briski 3, Ute Hentschel 2,6, Deniz Tasdemir 1,6* 1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany 2 Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 3 Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 4 Chinese Academy of Sciences, Research Center for Eco-Environmental Sciences, 18 Shuangqing Rd., Haidian District, Beijing, 100085, China 5 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada 6 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, Kiel 24118, Germany * Corresponding author: Deniz Tasdemir ([email protected]) This document includes: Supplementary Figures S1-S11 Figure S1. Genotyping of C. intestinalis with the mitochondrial marker gene COX3-ND1. Figure S2. Influence of the quality filtering steps on the total number of observed read pairs from amplicon sequencing. Figure S3. Rarefaction curves of OTU abundances for C. intestinalis and seawater samples. Figure S4. Multivariate ordination plots of the bacterial community associated with C. intestinalis. Figure S5. Across sample type and geographic origin comparison of the C. intestinalis associated microbiome.
    [Show full text]