Life 2013, 3, 131-148; doi:10.3390/life3010131 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Review Quorum Sensing in Extreme Environments Kate Montgomery 1, James C. Charlesworth 1, Rebecca LeBard 1, Pieter T. Visscher 2, 3 and Brendan P. Burns 1,3,* 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; E-Mails:
[email protected] (K.M.);
[email protected] (J.C.C.);
[email protected] (R.L.) 2 Center for Integrative Geosciences, University of Connecticut 354 Mansfield Road, Storrs, CT 06269-2045, USA; E-Mail:
[email protected] 3 Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052, Australia * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +61-2-9385-3659; Fax: +61-2-9385-1591. Received: 10 December 2012; in revised form: 21 January 2013 / Accepted: 22 January 2013 / Published: 29 January 2013 Abstract: Microbial communication, particularly that of quorum sensing, plays an important role in regulating gene expression in a range of organisms. Although this phenomenon has been well studied in relation to, for example, virulence gene regulation, the focus of this article is to review our understanding of the role of microbial communication in extreme environments. Cell signaling regulates many important microbial processes and may play a pivotal role in driving microbial functional diversity and ultimately ecosystem function in extreme environments. Several recent studies have characterized cell signaling in modern analogs to early Earth communities (microbial mats), and characterization of cell signaling systems in these communities may provide unique insights in understanding the microbial interactions involved in function and survival in extreme environments.