Evolution and Functional Analysis of Orf1 Within Nif Gene Cluster from Paenibacillus Graminis RSA19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Genomics and Energy and Environmental Science Poster 2011
Omics: Exploring the Molecular Universe within Biological Systems Instead of studying one or a few genes or proteins at a time, “omics” collectively Proteomics is the analysis of the proteome—the complete set describes the comprehensive analysis of genes, RNA transcripts, proteins, of proteins expressed by a cell or population of cells. Proteins, metabolites, and other molecules present in a biological system. Ongoing the workhorse molecules of life, catalyze biochemical reactions; advances in computing power and automated technologies for DNA sequencing provide structural support; and recognize, bind, or transport and experiments continue to improve our ability to analyze increasing numbers other molecules throughout the cell. Hundreds of dierent types of molecules and how they function as a system. Systems biology integrates the of proteins can be expressed at a time, and most are part of large data from various omic analyses using computational tools to build predictive complexes made up of models of biological systems. many proteins and other molecules. Transcriptomics is the analysis of the transcriptome—the complete set of RNA Hundreds to molecules present in a cell or population of thousands of different cells. RNA, which is much less stable than protein types exist within DNA, is constantly being synthesized and a cell. This large subunit of a ribosome contains about then broken down to facilitate rapid 3,000 RNA nucleotides changes in paerns of protein expression (gray) and 30 protein that occur as an organism dynamically chains (gold). responds to its environment. In addition to the three major classes of RNA (mRNA, tRNA, and ribosomal RNA), single- stranded RNA is very exible and can fold into complex shapes that carry out specic functions. -
Biological Diversity in the Patent System
Biological Diversity in the Patent System Paul Oldham1,2*, Stephen Hall1,3, Oscar Forero1,4 1 ESRC Centre for Economic and Social Aspects of Genomics (Cesagen), Lancaster University, Lancaster, United Kingdom, 2 Institute of Advanced Studies, United Nations University, Yokohama, Japan, 3 One World Analytics, Lancaster, United Kingdom, 4 Centre for Development, Environment and Policy, SOAS, University of London, London, United Kingdom Abstract Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. -
Azospirillum: Physiological Properties, Mode of Association with Roots and Its Application for the Benefit of Cereal and Forage Grass Crops
ISRAEL JOURNAL OF BOTANY, Vol. 31, 1982, pp. 214-220 AZOSPIRILLUM: PHYSIOLOGICAL PROPERTIES, MODE OF ASSOCIATION WITH ROOTS AND ITS APPLICATION FOR THE BENEFIT OF CEREAL AND FORAGE GRASS CROPS YAACOV 0KON Department ofPlant Pathology and Microbiology, Faculty ofAgriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 Israel The free-living nitrogen-fiXing bacterium Azospirillum species formerly known as Spirillum lipoferum (Beijerinck) has been described in detail by Tarrand et al., 1978. Based on DNA homology studies, two species of the genus have been characterized: Azospirillum brasilense and A. lipoferum. DNA composition of the genus is 69-71% G + C. The colonies are pink-red, drying out and turning rough with folded, wavy surfaces. Cells of Azospirillum are highly motile, half curved (vibroid), gram negative rods, having a diameter of 1.0 tmJ., with a polar flagellum when grown on liquid medium. Lateral flagella with shorter wavelengths could be observed in A. brasilense growing in agar medium. Cells contain prominent intracellular granules of poly-~ hydroxybutyrate. Physiological Properties The physiological and biochemical properties of Azospirillum have recently been reviewed (Neyra & Dobereiner, 1977; Burris et al., 1978; van Berkum & Bohlool, 1980; Dobereiner & De-Polli, 1980). The nitrogenase complex of A. brasilense sp. 7 is composed of the normal Mo-Fe and Fe proteins, but it also possesses the activating factor for the Fe protein (Ludden et al., 1978). A. brasilense is not capable of using glucose as a sole carbon source for growth or nitrogen fiXation, as it lacks the ability to ferment sugars. Vitamins are not required for growth. -
Characterization of Chemosensing in the Alphaproteobacterium <I> Azospirillum Brasilense </I>
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense Matthew Hamilton Russell University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Organismal Biological Physiology Commons Recommended Citation Russell, Matthew Hamilton, "Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense . " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1469 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Matthew Hamilton Russell entitled "Characterization of Chemosensing in the Alphaproteobacterium Azospirillum brasilense ." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology. Gladys M. Alexandre, Major Professor We have read this dissertation and recommend its acceptance: Dan Roberts, Andreas Nebenfuehr, Erik Zinser Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Characterization of the chemosensory abilities of the alphaproteobacterium Azospirillum brasilense A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Matthew Hamilton Russell August 2012 ii Copyright © 2012 by Matthew Russell All rights reserved. -
Modeling Aerotaxis Band Formation in Azospirillum Brasilense Mustafa Elmas University of Tennessee, Knoxville
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology Biochemistry, Cellular and Molecular Biology 5-17-2019 Modeling aerotaxis band formation in Azospirillum brasilense Mustafa Elmas University of Tennessee, Knoxville Vasilios Alexiades University of Tennessee, Knoxville Lindsey O'Neal University of Tennessee, Knoxville Gladys Alexandre University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_biocpubs Recommended Citation Mustafa Elmas, Vasilios Alexiades, Lindsey O’Neal, and Gladys Alexandre. "Modeling aerotaxis band formation in Azospirillum brasilense." BMC Microbiology (2019) 19:101 https://doi.org/10.1186/s12866-019-1468-9. This Article is brought to you for free and open access by the Biochemistry, Cellular and Molecular Biology at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Biochemistry, Cellular and Molecular Biology by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Elmas et al. BMC Microbiology (2019) 19:101 https://doi.org/10.1186/s12866-019-1468-9 RESEARCH ARTICLE Open Access Modeling aerotaxis band formation in Azospirillum brasilense Mustafa Elmas1, Vasilios Alexiades1, Lindsey O’Neal2 and Gladys Alexandre2* Abstract Background: Bacterial chemotaxis, the ability of motile bacteria to navigate gradients of chemicals, plays key roles in the establishment of various plant-microbe associations, including those that benefit plant growth and crop productivity. The motile soil bacterium Azospirillum brasilense colonizes the rhizosphere and promotes the growth of diverse plants across a range of environments. -
Effectiveness of Azospirillum Brasilense Sp245 on Young Plants of Vitis Vinifera L
Open Life Sci. 2017; 12: 365–372 Research Article Susanna Bartolini*, Gian Pietro Carrozza, Giancarlo Scalabrelli, Annita Toffanin Effectiveness of Azospirillum brasilense Sp245 on young plants of Vitis vinifera L. https://doi.org/10.1515/biol-2017-0042 Received April 15, 2017; accepted June 20, 2017 1 Introduction Abstract: Information about the influence of the plant Azospirillum spp. represents one of the best-characterized growth promoting rhizobacteria Azospirillum brasilense free-living diazotrophs among plant growth-promoting Sp245 on the development of grapevine plants could be rhizobacteria (PGPR), able to colonize hundreds of promoted to enhance sustainable agricultural practices plant species [1]. Azospirillum are proteobacteria mainly for globally important fruit crops such as grapes. Thus, associated with the rhizosphere of important cereals this study was initiated to evaluate the potential influence and other grasses; they stimulate the plant growth of A. brasilense Sp245 on two separate experimental trials, through several mechanisms including nitrogen fixation, A) potted young grape plants: cv. ‘Colorino’ grafted onto production of phytohormones and molecules with two rootstocks 420A and 157/11 which received a fixed antimicrobial activity [2]. Azospirillum brasilense was volume of inoculum at different times of vegetative cycle; additionally shown to induce remarkable changes in root B) hardwood cuttings from rootstock mother-plants of morphology [3]. A. brasilense Sp245 was initially isolated 420A and 775P inoculated during the phase of hydration, from the rhizosphere of wheat (Triticum aestivum L.) in before bench-grafting in a specialized nursery. Overall, our Brazil [4] and has been considered a promising strain for results revealed that A. brasilense Sp245 has considerable cereal inoculation during the 1980s. -
Paenibacillus Polymyxa
Liu et al. BMC Microbiology (2021) 21:70 https://doi.org/10.1186/s12866-021-02132-2 RESEARCH ARTICLE Open Access Interactional mechanisms of Paenibacillus polymyxa SC2 and pepper (Capsicum annuum L.) suggested by transcriptomics Hu Liu, Yufei Li, Ke Ge, Binghai Du, Kai Liu, Chengqiang Wang* and Yanqin Ding* Abstract Background: Paenibacillus polymyxa SC2, a bacterium isolated from the rhizosphere soil of pepper (Capsicum annuum L.), promotes growth and biocontrol of pepper. However, the mechanisms of interaction between P. polymyxa SC2 and pepper have not yet been elucidated. This study aimed to investigate the interactional relationship of P. polymyxa SC2 and pepper using transcriptomics. Results: P. polymyxa SC2 promotes growth of pepper stems and leaves in pot experiments in the greenhouse. Under interaction conditions, peppers stimulate the expression of genes related to quorum sensing, chemotaxis, and biofilm formation in P. polymyxa SC2. Peppers induced the expression of polymyxin and fusaricidin biosynthesis genes in P. polymyxa SC2, and these genes were up-regulated 2.93- to 6.13-fold and 2.77- to 7.88-fold, respectively. Under the stimulation of medium which has been used to culture pepper, the bacteriostatic diameter of P. polymyxa SC2 against Xanthomonas citri increased significantly. Concurrently, under the stimulation of P. polymyxa SC2, expression of transcription factor genes WRKY2 and WRKY40 in pepper was up-regulated 1.17-fold and 3.5-fold, respectively. Conclusions: Through the interaction with pepper, the ability of P. polymyxa SC2 to inhibit pathogens was enhanced. P. polymyxa SC2 also induces systemic resistance in pepper by stimulating expression of corresponding transcription regulators. -
Mechanisms of Azospirillum in Plant Growth Promotion
Scholars Journal of Agriculture and Veterinary Sciences e-ISSN 2348–1854 Sch J Agric Vet Sci 2017; 4(9):338-343 p-ISSN 2348–8883 ©Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) Mechanisms of Azospirillum in Plant Growth Promotion Pramod Kumar Sahu1, Amrita Gupta2, Lalan Sharma3, Rahul Bakade4 1ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India-275 103 2Department of Biotechnology, M.S. Ramaiah College of Arts, Science and Commerce, Bengaluru, India-560 085 3ICAR-IISR, Lucknow, India-226 002 4ICAR-CPRS, Sahaynagar, Patna-801 506 Abstract: Azospirillum is one of the successful inoculants for di-nitrogen fixation and *Corresponding author plant growth promotion in non-legume crops. It is micro-aerophillic microorganisms Amrita Gupta found mainly with cereals and grasses. Apart from dinitrogen fixation, it confers many other benefits to crop plants like improve seed germination, enhance seedling growth, Article History enhancing proton flux, phosphorus solubilization, sequestration of iron, production of Received: 03.08.2017 phytohormones, increase photosynthetic pigments, helping other plant growth promoters, Accepted: 16.08.2017 enhance dry matter partitioning, restoration of vegetation in harsh environment, enhance Published: 30.09.2017 seed quality, alleviate biotic and abiotic stresses, etc. It can be used as microbial inoculants of interest for overall success of plant in the field. I also enhance the adaptability of other DOI: bio-inoculants by providing wider benefits. In this mini-review, we are discussing such 10.21276/sjavs.2017.4.9.3 mechanisms which Azospirillum confers to plants. Keywords: Azospirillum, plant growth promotion, nitrogen fixation, stress tolerance INTRODUCTION Microbial inoculants provide colossal benefits to crops starting from seed germination to prevention of post-harvest losses [1, 2]. -
Research Article Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea
Hindawi Publishing Corporation Archaea Volume 2012, Article ID 845756, 11 pages doi:10.1155/2012/845756 Research Article Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea Kimberly M. Webb and Jocelyne DiRuggiero Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA Correspondence should be addressed to Jocelyne DiRuggiero, [email protected] Received 25 July 2012; Revised 18 September 2012; Accepted 13 October 2012 Academic Editor: Yoshizumi Ishino Copyright © 2012 K. M. Webb and J. DiRuggiero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo- inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo- inositol phosphate in vitro. -
Counts Metabolic Yr10.Pdf
Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. -
Characterization of Cellular, Biochemical and Genomic Features of the Diazotrophic Plant Growth-Promoting Bacterium Azospirillum
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.06.442973; this version posted May 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Characterization of cellular, biochemical and genomic features of the 2 diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF- 3 412522, a novel member of the Azospirillum genus 4 5 Gustavo L. Rodriguesa,*, Filipe P. Matteolia,*, Rajesh K. Gazaraa, Pollyanna S. L. Rodriguesb, 6 Samuel T. dos Santosb, Alice F. Alvesb,c, Francisnei Pedrosa-Silvaa, Isabella Oliveira-Pinheiroa, 7 Daniella Canedo-Alvarengaa, Fabio L. Olivaresb,c,#, Thiago M. Venancioa,# 8 9 a Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e 10 Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil; b Núcleo 11 de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), UENF, Brazil; c 12 Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil. * 13 Contributed equally to this work. 14 15 # Corresponding authors: 16 Thiago M. Venancio; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de 17 Biociências e Biotecnologia, UENF; Av. Alberto Lamego 2000, P5 / sala 217; Campos dos 18 Goytacazes, Rio de Janeiro, Brazil. E-mail: [email protected]. 19 20 Fabio L. Olivares: Laboratório de Biologia Celular e Tecidual, Centro de Biociências e 21 Biotecnologia, UENF, Brazil. E-mail: [email protected].