Thioredoxin Targets Fundamental Processes in a Methane-Producing Archaeon, Methanocaldococcus Jannaschii

Total Page:16

File Type:pdf, Size:1020Kb

Thioredoxin Targets Fundamental Processes in a Methane-Producing Archaeon, Methanocaldococcus Jannaschii Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii Dwi Susantia,b,c, Joshua H. Wongd, William H. Vensele, Usha Loganathana,c,f, Rebecca DeSantisg,1, Ruth A. Schmitzg, Monica Balserah, Bob B. Buchanand,2, and Biswarup Mukhopadhyaya,c,f,2 Departments of aBiochemistry and fBiological Sciences, bGenetics, Bioinformatics and Computational Biology Graduate Program, and cVirginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061; dDepartment of Plant and Microbial Biology, University of California, Berkeley, CA 94720; eWestern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710; gInstitut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, 24118 Kiel, Germany; and hDepartamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain Contributed by Bob B. Buchanan, January 7, 2014 (sent for review September 10, 2013) Thioredoxin (Trx), a small redox protein, controls multiple pro- strict anaerobes that produce methane, a prominent greenhouse cesses in eukaryotes and bacteria by changing the thiol redox gas and important fuel. We have focused on Methanocaldococcus status of selected proteins. The function of Trx in archaea is, jannaschii—a deeply rooted, hyperthermophilic methanogen living however, unexplored. To help fill this gap, we have investigated in deep-sea hydrothermal vents (10) where conditions mimic those this aspect in methanarchaea—strict anaerobes that produce meth- of early Earth. M. jannaschii produces methane exclusively from ane, a fuel and greenhouse gas. Bioinformatic analyses suggested H2 and CO2 via a process believed to represent an ancient form of that Trx is nearly universal in methanogens. Ancient methanogens respiration (11). M. jannaschii thus presents an opportunity to that produce methane almost exclusively from H2 plus CO2 carried explore the role of Trx in an archaeon and, at the same time, gain approximately two Trx homologs, whereas nutritionally versatile insight into the evolutionary history of redox regulation. Our members possessed four to eight. Due to its simplicity, we studied results suggest that Trx alleviates oxidative stress in methanogens ECOLOGY the Trx system of Methanocaldococcus jannaschii—a deeply rooted via a thiol-based mechanism that could also regulate fundamental hyperthermophilic methanogen growing only on H2 plus CO2.The processes by redox transitions in the absence of O2.Therole organism carried two Trx homologs, canonical Trx1 that reduced formulated for this anaerobic archaeon confirms and extends insulin and accepted electrons from Escherichia coli thioredoxin re- that established for aerobic forms of life. ductase and atypical Trx2. Proteomic analyses with air-oxidized extracts treated with reduced Trx1 revealed 152 potential targets Results representing a range of processes—including methanogenesis, biosyn- Thioredoxin Homologs of Methanarchaea. Iterative BLAST searches thesis, transcription, translation, and oxidative response. In enzyme (12) using Escherichia coli and M. jannaschii Trxs as queries and assays, Trx1 activated two selected targets following partial deactiva- screening output for hits with the C-X-X-C motif and appropriate tion by O2, validating proteomics observations: methylenetetrahydro- sizes of 70- to 110-aa residues (13) showed that Trx homologs exist methanopterin dehydrogenase, a methanogenesis enzyme, and sul- in almost all methanogen genomes represented in the National fite reductase, a detoxification enzyme. The results suggest that Trx Center for Biotechnology Information (NCBI) database (Fig. 1 assists methanogens in combating oxidative stress and synchroniz- and Table S1). Methanopyrus kandleri AV19, a hydrothermal ing metabolic activities with availability of reductant, making it a crit- vent-associated hyperthermophilic methanogen (optimum growth ical factor in the global carbon cycle and methane emission. Because methanogenesis developed before the oxygenation of Earth, it Significance seems possible that Trx functioned originally in metabolic regulation independently of O2, thus raising the question whether a complex biological system of this type evolved at least 2.5 billion years ago. This study extends thioredoxin (Trx)-based oxidative redox regulation to the archaea, the third domain of life. Our study methanogenic archaea | redox regulation | hydrothermal vent | suggests that Trx is nearly ubiquitous in anaerobic metha- early Earth | evolution nogens, enabling them to recover from oxidative stress and synchronize cellular processes, including methane biogenesis, ∼ with the availability of reductants. As methane is a valuable hioredoxins (Trxs) are small ( 12-kDa) redox proteins typi- fuel, an end product of anaerobic biodegradation and a potent Tcally bearing a characteristic Cys-Gly-Pro-Cys motif that re- greenhouse gas, Trx may now be considered a critical partici- duce specific disulfide bonds of selected proteins (1). Reduction pant in the global carbon cycle, climate change, and bioenergy — alters the biochemical properties of the proteins targeted e.g., by production. Because methanogenesis developed before the increasing their activity or solubility (1). Trxs are found in the three oxygenation of the earth, our work raises the possibility that domains of life: bacteria, eukarya, and archaea (2). In eukarya and Trx functioned in a complex redox regulatory network in an- bacteria, the regulatory role of Trx has been shown to span the aerobic prokaryotes at least 2.5 billion years ago. major aspects of metabolism, including photosynthesis, biosynthesis, replication, transcription, translation, and stress response (1). Trx Author contributions: D.S., J.H.W., W.H.V., R.A.S., M.B., B.B.B., and B.M. designed research; D.S., also acts as an electron donor for enzymes, notably ribonucleotide J.H.W., W.H.V., U.L., and R.D. performed research; D.S., J.H.W., W.H.V., R.A.S., M.B., B.B.B., and B.M. analyzed data; and D.S., J.H.W., W.H.V., B.B.B., and B.M. wrote the paper. reductase, phosphoadenosinephosphosulfate reductase, methionine The authors declare no conflict of interest. sulfoxide reductase, and peroxiredoxins (1). However, in contrast 1Present address: Department of Intensive Care and Intermediate Care, University Hospital, to the wealth of information for bacteria and eukaryotes, our un- Rheinisch-Westfaelische Technische Hochschule Aachen University, 52074 Aachen, Germany. derstanding of archaeal Trx is limited to its biochemical and struc- 2To whom correspondence may be addressed. E-mail: [email protected] or view@ tural properties (3–9). Its physiological role remains a mystery. berkeley.edu. To help fill this gap, we have investigated the role of Trx in a This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. group of archaea known as methanogens or methanarchaea— 1073/pnas.1324240111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1324240111 PNAS Early Edition | 1of6 Downloaded by guest on October 2, 2021 temperature, 98 °C), was apparently the only exception in lacking a were oxidized by aerobic dialysis, and the remaining free sulfhydryl recognizable homolog of Trx (14). groups of the air-exposed proteins were blocked by alkylation. The Methanococci and Methanobacteria carriedanaverageoftwoTrx extract was then treated with Trx1 using either DTT or NADPH homologs, with their numbers ranging from one to four, whereas (plus E. coli NTR) as reductant, anticipating that Trx1 would re- Methanomicrobia possessed two to eight Trx homologs, with an duce the regulatory disulfide (S–S) groups formed in aerobic di- average of four. Methanocorpuscullum labreanum, amemberofthe alysis. The newly available free –SH groups were derivatized with the latter class, was an exception in possessing two Trx homologs. fluorescent probe monobromobimane (mBBr), and the labeled proteins were resolved in 2D gels (Fig. S2 A and B). The fluorescent Trxs of M. jannaschii. M. jannaschii (Mj) carries two Trx homologs, spots, which were either absent or less intense in control gels, were Mj_0307 and Mj_0581 (9, 15), here called Trx1 and Trx2, re- analyzed by mass spectrometry (17). The experiment with DTT was spectively. The sequence identity and similarity between Trx1 performed in triplicate and that with Ec-NTR+NAPDH was per- and Trx2 are 23% and 49%, respectively. Both proteins have formed once. From these experiments, we identified a total of 152 homologs in Methanothermobacter thermautotrophicus ΔH (7, 8), potential Trx1 targets (Table 1 and Table S2). Of these, 19 proteins where Trx1 is closely related to MTH807 (identity, 51%; simi- were identified in all four experiments, and 18, 38, and 77 were larity, 67%) and Trx2 corresponds to MTH895 (identity, 37%; detected in three, two, and one of the experiments, respectively. similarity, 54%). Purified recombinant Trx1 and Trx2 were re- duced by dithiothreitol (DTT) (Fig. S1A). However, the proteins Effect of Reduction by Trx1 on the Activity of Selected M. jannaschii were distinct in two well-characterized activities in which Trx1 Enzymes. F420-dependent sulfite reductase. An air-exposed 7,8-dide- exhibited a closer resemblance to E. coli Trx, a standard in the field. methyl-8-hydroxy-5-deazaflavin-5′-phosphoryllactyl glutamate [co- First, in the insulin reduction assay, Trx1 showed 80-fold higher enzyme F420 (F420)]-dependent sulfite reductase (Fsr) preparation
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • Genomics and Energy and Environmental Science Poster 2011
    Omics: Exploring the Molecular Universe within Biological Systems Instead of studying one or a few genes or proteins at a time, “omics” collectively Proteomics is the analysis of the proteome—the complete set describes the comprehensive analysis of genes, RNA transcripts, proteins, of proteins expressed by a cell or population of cells. Proteins, metabolites, and other molecules present in a biological system. Ongoing the workhorse molecules of life, catalyze biochemical reactions; advances in computing power and automated technologies for DNA sequencing provide structural support; and recognize, bind, or transport and experiments continue to improve our ability to analyze increasing numbers other molecules throughout the cell. Hundreds of dierent types of molecules and how they function as a system. Systems biology integrates the of proteins can be expressed at a time, and most are part of large data from various omic analyses using computational tools to build predictive complexes made up of models of biological systems. many proteins and other molecules. Transcriptomics is the analysis of the transcriptome—the complete set of RNA Hundreds to molecules present in a cell or population of thousands of different cells. RNA, which is much less stable than protein types exist within DNA, is constantly being synthesized and a cell. This large subunit of a ribosome contains about then broken down to facilitate rapid 3,000 RNA nucleotides changes in paerns of protein expression (gray) and 30 protein that occur as an organism dynamically chains (gold). responds to its environment. In addition to the three major classes of RNA (mRNA, tRNA, and ribosomal RNA), single- stranded RNA is very exible and can fold into complex shapes that carry out specic functions.
    [Show full text]
  • Biological Diversity in the Patent System
    Biological Diversity in the Patent System Paul Oldham1,2*, Stephen Hall1,3, Oscar Forero1,4 1 ESRC Centre for Economic and Social Aspects of Genomics (Cesagen), Lancaster University, Lancaster, United Kingdom, 2 Institute of Advanced Studies, United Nations University, Yokohama, Japan, 3 One World Analytics, Lancaster, United Kingdom, 4 Centre for Development, Environment and Policy, SOAS, University of London, London, United Kingdom Abstract Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics.
    [Show full text]
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • Archaeology of Eukaryotic DNA Replication
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010).
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • An Estimate of the Elemental Composition of Luca
    Astrobiology Science Conference 2015 (2015) 7328.pdf AN ESTIMATE OF THE ELEMENTAL COMPOSITION OF LUCA. Aditya Chopra1 and Charles H. Lineweaver1, 1Planetary Science Institute, Research School of Earth Sciences and Research School of Astronomy and Astrophysics, Australian National University, [email protected], [email protected] A number of genomic and proteomic features of composition of life, we attempt to account for life on Earth, like the 16S ribosomal RNA gene, have differences in composition between species and other been highly conserved over billions of years. Genetic phylogenetic taxa (Fig. 2) by weighting datasets such and proteomic conservation translates to conservation that the result represents the root of prokaryotic life of metabolic pathways across taxa. It follows that the (LUCA). Variations in composition between data sets stoichiometry of the elements that make up some of that can be attributed to different growth stages or the biomolecules will be conserved. By extension, the environmental factors are used as estimates of the elemental make up of the whole organism is a uncertainty associated with the average abundances for relatively conserved feature of life on Earth [1,2]. each taxa. We describe how average bulk elemental Euryarchaeota 1a Methanococci, Methanobacteria, Methanopyri 7 Euryarchaeota 1b abundances in extant life can yield an indirect estimate 6 Thermoplasmata, Methanomicrobia, Halobacteria, Archaeoglobi Euryarchaeota 2 4 Thermococci of relative abundances of elements in the Last Crenarchaeota Sulfolobus, Thermoproteus ? Thaumarchaeota Universal Common Ancestor (LUCA). The results Cenarchaeum ? Korarchaeota ARMAN could give us important hints about the stoichiometry ? 2 Archaeal Richmond Mine Acidophilic Nanoorganisms Nanoarchaeota of the environment where LUCA existed and perhaps Archaea Terrabacteria clues to the processes involved in the origin and early Actinobacteria, Deinococcus-Thermus, 1 Cyanobacteria, Life Chloroflexi, 9 evolution of life [3].
    [Show full text]
  • Title Genomic Analysis of the Marine Hyperthermophilic Archaeon
    Genomic analysis of the marine hyperthermophilic archaeon Title Aeropyrum( Dissertation_全文 ) Author(s) Daifuku, Takashi Citation 京都大学 Issue Date 2015-03-23 URL https://doi.org/10.14989/doctor.k19034 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-08-01に公開 Type Thesis or Dissertation Textversion ETD Kyoto University 1. General introduction Chapter 1 General introduction Gene repertoires and genome organizations differ between closely related microbial organisms depending on the ecological characteristics of each habitat (Cohan and Koeppel 2008). The cyanobacterial Prochlorococcus spp. account for a significant fraction of primary production in the ocean (Goericke and Welschmeyer 1993) and show physiological features relevant to the different ecological niches within a stratified oceanic water column (Moore et al. 1998; West et al. 2001). The whole-genomic comparisons of the Prochlorococcus spp. strains show gross signatures according to this niche differentiation (Rocap et al. 2003). Alpha-proteobacterium Pelagibacter ubique which belongs to the SAR11 clade in the phylogenetic tree based on the 16S rRNA gene is the most abundant microorganism in the ocean (Morris et al. 2002). The genomes of the SAR11 isolates are highly conserved in the core genes that are common to all strains (Medini et al. 2005) and show synteny (the conservation of DNA sequence and gene order) (Bentley and Parkhill 2004). However, variations exist among genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important for niche partitioning (Grote et al. 2012). This adaptation at the genomic level was also observed in archaea. The members of the genus Pyrococcus are anaerobic and hyperthermophilic archaea (Fiala and Stetter 1 1.
    [Show full text]
  • Universidad Politécnica De Madrid Escuela Técnica Superior De Ingeniería Agronómica Alimentaria Y De Biosistemas Departamento De Biotecnología-Biología Vegetal
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA ALIMENTARIA Y DE BIOSISTEMAS DEPARTAMENTO DE BIOTECNOLOGÍA-BIOLOGÍA VEGETAL TESIS DOCTORAL Caracterización de una nueva proteína hipertermófila NifB y su papel en el mecanismo de síntesis de NifB-co, precursor del grupo metálico de FeMo-co Author: Alessandro Scandurra Director: Prof. Luis Manuel Rubio Herrero Co-director: Dr. Simon Jean Marius Arragain i ii UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA ALIMENTARIA Y DE BIOSISTEMAS DEPARTAMENTO DE BIOTECNOLOGÍA-BIOLOGÍA VEGETAL Memoria presentada por D. Alessandro Scandurra para optar al grado de Doctor Director Dr. Luis Manuel Rubio Herrero Profesor Titular UPM Madrid, 2017 © This copy oF the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rest with the author and that no quotation From the thesis, or any inFormation derived therefrom may be published without the author’s prior, written consent. I II AcKnowledgments As each journey, also this one has an end (Thanks goodness). It was a long trip, with several changes oF direction. Like For many other people, the PhD adventure was not easy, but I have to admit that I was lucky enough to meet really unique people, that became special Friendships. First oF all, I want to thank my Family, especially my mother and my Father, who always push me to go Forward in my life and to Follow my dreams, ready to pay the sacrifice oF the distance. This expirience has helped me to understand how easy is to be a son and how challenging is to be a parent.
    [Show full text]
  • Research Article Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea
    Hindawi Publishing Corporation Archaea Volume 2012, Article ID 845756, 11 pages doi:10.1155/2012/845756 Research Article Role of Mn2+ and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea Kimberly M. Webb and Jocelyne DiRuggiero Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA Correspondence should be addressed to Jocelyne DiRuggiero, [email protected] Received 25 July 2012; Revised 18 September 2012; Accepted 13 October 2012 Academic Editor: Yoshizumi Ishino Copyright © 2012 K. M. Webb and J. DiRuggiero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo- inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo- inositol phosphate in vitro.
    [Show full text]
  • Counts Metabolic Yr10.Pdf
    Advanced Review Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms James A. Counts,1 Benjamin M. Zeldes,1 Laura L. Lee,1 Christopher T. Straub,1 Michael W.W. Adams2 and Robert M. Kelly1* The current upper thermal limit for life as we know it is approximately 120C. Microorganisms that grow optimally at temperatures of 75C and above are usu- ally referred to as ‘extreme thermophiles’ and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, hetero- trophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs— basically, anywhere there is hot water. Initial efforts to study extreme thermo- philes faced challenges with their isolation from difficult to access locales, pro- blems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermo- philes were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiologi- cal, metabolic and biotechnological features. The bacterial genera Caldicellulosir- uptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermo- philes to date. The recent emergence of genetic tools for many of these organ- isms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering.
    [Show full text]