I Bacterial Classifications in the Genomic Era by Kevin Liang A

Total Page:16

File Type:pdf, Size:1020Kb

I Bacterial Classifications in the Genomic Era by Kevin Liang A ! ! #$%&'("$)!*)$++","%$&"-.+!".!&/'!0'.-1"%!2($! 34! ! 5'6".!7"$.8! ! ! ! 9!&/'+"+!+:31"&&';!".!<$(&"$)!,:),"))1'.&!-,!&/'!('=:"('1'.&+!,-(!&/'!;'8(''!-,! ! >$+&'(!-,!?%"'.%'! ".! >"%(-3"-)-84!$.;!#"-&'%/.-)-84! ! ! ! @'<$(&1'.&!-,!#"-)-8"%$)!?%"'.%'+! A."6'(+"&4!-,!9)3'(&$! ! ! ! B!5'6".!7"$.8C!DEDE! ! ! "! "#$%&'(%! ! #$%&'("$)!&$F-.-14!"+!$.!".&'8($)!<$(&!-,!$))!;"+%"<)".'+!G"&/".!&/'!,"');!-,!1"%(-3"-)-84C! $+!"&!$))-G+!('+'$(%/'(+!&-!%-11:."%$&'!('+:)&+!',,"%"'.&)4C!+&('$1)".".8!8)-3$)!%-))$3-($&"-.H!I/'! :)&"1$&'!8-$)!-,!3$%&'("$)!&$F-.-14!"+!&-!%('$&'!8(-:<+!-,!-(8$."+1+!3$+';!.-&!-.)4!-.!+/$(';! </'.-&4<"%!$.;!8'.-1"%!&($"&+C!3:&!$)+-!$!%-11-.!'6-):&"-.$(4!/"+&-(4H!I-!$%/"'6'!&/"+!8-$)C!&/'! <-)4</$+"%!$<<(-$%/C!G/"%/!'F$1".'+!</'.-&4<"%C!8'.-1"%!$.;!</4)-8'.'&"%!;$&$C!"+!,$6-(';H! 9)&/-:8/!&/'!&/(''!1$J-(!%-1<-.'.&+!-,!<-)4</$+"%!&$F-.-14!('1$".!:.%/$.8';!+".%'!"&!G$+! ,"(+&!<(-<-+';!".!KLMNC!&/'!1'&/-;+!".!G/"%/!G'!$++'++!&/'+'!$+<'%&+!/$6'!"1<(-6';!+"8.","%$.&)4! ;:'!&-!&/'!$3:.;$.%'!-,!G/-)'!8'.-1'!+'=:'.%'+!OP0?Q!$6$")$3)'H!R.!$;;"&"-.C!P0?!/$+!$)+-! +'(6';!$+!&/'!3$+"+!,-(!;'6')-<".8!/"8/S('+-):&"-.!+:3+<'%"'+!)'6')!%)$++","%$&"-.!&'%/."=:'+H!I/'! ('+'$(%/!<('+'.&';!".!&/"+!&/'+"+!&/'(',-('!,-%:+'+!-.!3-&/!$<<)4".8!1-;'(.!&'%/."=:'+!&-!&/'! <-)4</$+"%!$<<(-$%/!&-!&$F-.-14!$.;!;'6')-<".8!$!+&$.;$(;"T';C!'$+4S&-S:+'!/"8/S('+-):&"-.! +:3+<'%"'+!&4<".8!&'%/."=:'H! ! I($;"&"-.$))4C!&/'!KM?!(UV9!8'.'!/$+!3''.!:+';!&-!$++'++!8'.-1"%!$.;!</4)-8'.'&"%! (')$&"-.+/"<+!,-(!&$F-.-1"%!<:(<-+'+H!9)&/-:8/!"&!"+!.-G!G";')4!W.-G.!&/$&!KM?!(@V9!"+!.-&! +:"&$3)'!,-(!+<'%"'+C!8'.:+!-(!'6'.!,$1")4!)'6')!&$F-.-1"%!%)$++","%$&"-.+C!"&!"+!+&"))!%-11-.)4! :+';!&-!,:),"))!&/'!</4)-8'.'&"%!$+<'%&!-,!<-)4</$+"%!&$F-.-14!G"&/".!&/'!,$1")4! !"#$#%&'()*&')&)H!*-.+'=:'.&)4C!&$F-.-1"%!".%-.+"+&'.%"'+!/$6'!3''.!$!('-%%:((".8!<(-3)'1! +".%'!&/'!%-.%'<&"-.!-,!&/"+!8(-:<!".!DEEXH!I-!('+-)6'!&$F-.-1"%!".%-.+"+&'.%"'+!G"&/".!&/"+! ,$1")4C!-6'(!YEE!&4<'!+&($".+!G"&/!/"8/S=:$)"&4!8'.-1'+!G'('!$.$)4T';H!9+!&4<'!+&($".+!$('! "1<-(&$.&!(','('.%'!1$&'("$)!,-(!%)$++","%$&"-.C!('+-)6".8!&$F-.-1"%!".%-.+"+&'.%"'+!$1-.8!&/'+'! +&($".+!G"))!:)&"1$&')4!/')<!8:";'!,:&:('!&$F-.-1"%!',,-(&+!$.;!<('6'.&!&/'!<(-<$8$&"-.!-,!'((-(+H! #$+';!-.!8'.-1"%!$.;!%-('S8'.-1'!</4)-8'.'&"%!;$&$C!&/(''!+<'%"'+C!$.;!DX!8'.:+!)'6')! ! ""! 1"+%)$++","%$&"-.+!G'('!";'.&","';H!*-13".".8!$!1'&$S$.$)4+"+!-,!</'.-&4<'+!G"&/!8'.-1"%! &'%/."=:'+C!;"+&".8:"+/".8!</'.-&4<"%!&($"&+!:+',:)!,-(!,$1")4!)'6')!%)$++","%$&"-.!G'('!<(';"%&';H! Z:(&/'(1-('C!$!8'.'($)!$<<(-$%/!&-!&$F-.-14!3$+';!-.!8'.-1"%!$.;!</4)-8'.'&"%!$.$)4+'+!"+! <(-<-+';C!&-!6$)";$&'!&$F-.-1"%!%)$++","%$&"-.+!3:&!$)+-!/"8/)"8/&!<-&'.&"$)!1"+%)$++","%$&"-.+H! ! ?:3+<'%"'+!)'6')!%)$++","%$&"-.!"+!$.!".&'8($)!<$(&!-,!'<";'1"-)-8"%$)!$.;!%)"."%$)!('+'$(%/C! $+!"&!"+!"1<-(&$.&!&-!;",,'('.&"$&'!3'&G''.!%)-+')4!(')$&';!<$&/-8'."%!$.;!.-.S<$&/-8'."%!+&($".+! G"&/".!&/'!+$1'!+<'%"'+H!9!/"8/S('+-):&"-.!+:3+<'%"'+!)'6')!&4<".8!1'&/-;C!W.-G.!$+!%-('S 8'.-1'!1:)&")-%:+!+'=:'.%'!&4<".8!O%8>7?IQ!G$+!;'6')-<';!,-(!+,%*,#-'"#.)*&)C!$!3$%&'(":1! 3'+&!W.-G.!$+!&/'!%$:+$&"6'!$8'.&!-,!%/-)'($H!I($;"&"-.$))4C!+:3+<'%"'+!&4<".8!,-(!+/-'"#.)*&)- G$+!3$+';!-.!1:)&")-%:+!+'=:'.%'!&4<".8!O>7?IQC!1:)&")-%:+!6$("$3)'!&$.;'1!('<'$&+!$.$)4+"+! O>7[9Q!-(!+'(-&4<".8H!I/'+'!1'&/-;+!<(-6";';!)"1"&';!('+-):&"-.C!G/"%/!('+&("%&';!"&+!:+'!".!$.! '<";'1"-)-8"%$)!+'&&".8H!%8>7?IC!-.!&/'!-&/'(!/$.;C!<(-6";'+!1:%/!8('$&'(!('+-):&"-.!&/$.!$.4! <('6"-:+)4!.$1';!1'&/-;!$+!"&!:&")"T'+!$!+"8.","%$.&)4!)$(8'(!<-(&"-.!-,!&/'!8'.-1'!34!$.$)4T".8! $))!8'.'+!%-11-.!&-!+/-'"#.)*&)H!9.!-:&3('$W!&/('+/-);!%$<$3)'!-,!";'.&",4".8!-:&3('$W!(')$&';! +&($".+!$.;!<-&'.&"$)!+-:(%'+!-,!".&(-;:%&"-.!"+!<(-<-+';H!I-!/')<!%-.+-)";$&'!'F"+&".8!>7?I! ".,-(1$&"-.!$.;!$)+-!".6'+&"8$&'!)$(8'S+%$)'!'%-)-8"%$)!$.;!'<";'1"-)-8"%$)!<$&&'(.+C!$! +:3)".'$8'!&/('+/-);!"+!;',".';!G/"%/!%('$&'+!%):+&'(+!+"1")$(!&-!&($;"&"-.$)!>7?I!+%/'1'+H! A+".8!&/"+!&/('+/-);C!$!+&(-.8!8'-8($</"%!+"8.$)!"+!;'&'%&';!$1-.8!'.6"(-.1'.&$)!"+-)$&'+!.-&! +''.!".!%)"."%$)!+&($".+H!I/"+!+%/'1'C!$)-.8!G"&/!-6'(!KCDEE!+/-'"#.)*&)-8'.-1'+!$.;!(')'6$.&! <(-6'.$.%'!;$&$C!"+!%:(('.&)4!$6$")$3)'!-.!\:3>7?I!O/&&<+]^^<:31)+&H-(8^6%/-)'($'Q!,-(!<:3)"%! $%%'++H! ! U'+'$(%/!<('+'.&';!".!&/"+!&/'+"+!;'1-.+&($&'+!&/'!"1<-(&$.%'!-,!P0?S3$+';!$.$)4+'+C! .-&!-.)4!,-(!&$F-.-1"%!%)$++","%$&"-.+!$&!&/'!+<'%"'+!)'6')!$.;!$3-6'C!3:&!$)+-!$&!&/'!+:3+<'%"'+! ! """! )'6')H!9+!.'F&!8'.'($&"-.!+'=:'.%".8!$.;!3"-".,-(1$&"%+!&'%/."=:'+!;'6')-<C!P0?S3$+';! 1'&/-;+!G"))!".'6"&$3)4!3'%-1'!+&$.;$(;!<($%&"%'+!,-(!3$%&'("$)!%)$++","%$&"-.H! ! ! "6! )&*+'(*! ?-1'! ('+'$(%/! &/$&! ,-(1+! <$(&! -,! &/"+! &/'+"+! ('+:)&+! ,(-1! %-))$3-($&"6'! G-(WH! R.;"6";:$)! %-.&("3:&"-.+!,-(!'$%/!-,!&/'!%/$<&'(+!$('!)"+&';!3')-GH!! 9!6'(+"-.!-,!%/$<&'(!D!G"))!3'!+:31"&&';!,-(!<:3)"%$&"-.!$+]! _7"$.8C!5H`HaHC!b($&$C!ZH@HC!#-:%/'(C!`HZHC!$.;!*$+'C!UHcH!U-+'-3$%&'(+!".!$!+'$!-,!<-)4S! $.;!<$($</4)4]!G/-)'!8'.-1'S3$+';!&$F-.-14!-,!&/'!,$1")4!!"#$#%&'()*&')&)!$.;!&/'! <(-<-+$)!,-(!&/'!+<)"&!-,!&/'!_(-+'-3$%&'(!%)$;'d!".&-!$!.-6')!,$1")4C!!#0)#%&'()*&')&)! ,$1H!.-6Hd! ! 5`a7C!`Z#!$.;!Uc*!;'+"8.!&/'!+&:;4!$.;!G(-&'!&/'!1$.:+%("<&H!Z@b!$.;! 5`a7!<'(,-(1';!3"-".,-(1$&"%!$.$)4+'+!$.;!%-))'%&';!;$&$H!`Z#!$.;!Uc*!+:<'(6"+';! &/'!<(-J'%&H! 9!6'(+"-.!-,!%/$<&'(!Y!G"))!3'!+:31"&&';!,-(!<:3)"%$&"-.!$+]! _7"$.8C!5H`HaHC!b($&$C!ZH@HC!R+)$1C!>HIHC!V$+(''.C!IHC!9)$1C!>HC!I$((C!*H7HC!#-:%/'(C! `HZH!9!["3("-!%/-)'($'!*-('S0'.-1'!>:)&")-%:+!?'=:'.%'!I4<".8!?%/'1'!&-!,$%")"&$&'! &/'!'<";'1"-)-8"%$)!+&:;4!-,!*/-)'($Hd! ! 5`a7!$.;!`Z#!;'+"8.!&/'!+&:;4!$.;!G(-&'!&/'!1$.:+%("<&H!Z@b!$.;!5`a7! <'(,-(1';!3"-".,-(1$&"%!$.$)4+'+!$.;!R>I!/')<';!G"&/!;$&$!$.$)4+"+H!*7IC!IV!$.;!9>! <(-6";';!%)"."%$)!$.;!'.6"(-.1'.&$)!+&($".+H!`Z#!+:<'(6"+';!&/'!<(-J'%&H! R.!$;;"&"-.!&-!('+'$(%/!<('+'.&';!/'('C!R!G$+!$)+-!".6-)6';!".!-&/'(!%-))$3-($&"6'!G-(W+H!9<<'.;"F! *!<(-6";'+!$!)"+&!-,!$:&/-(';!$.;!%-$:&/-(';!<:3)"%$&"-.+H!! ! ! 6! "(,-./0*12*3*-%$! ! R!G-:);!)"W'!&-!&/$.W!'6'(4-.'!G/-!/$+!/')<';!1'!&/(-:8/-:&!&/"+!<(-%'++!$+!.-.'!-,!&/"+! G-:);!/$6'!3''.!<-++"3)'H!R!G-:);!)"W'!&-!&/$.W!@(H!`$..!#-:%/'(!,-(!8"6".8!1'!&/'!%/$.%'!&-! J-".!/"+!)$3!$.;!&$W'!<$(&!".!/"+!('+'$(%/H!`-:!G'('!$)G$4+!G"))".8!&-!+/$('!4-:(!'F<'("'.%'!$.;! 8"6'!$;6"%'!&-!/')<!1'!;'$)!G"&/!&/'!+&('++,:)!&"1'+!$.;!W''<".8!1'!-.!&($%WH!`-:e('!$!8('$&!\R! $.;!R!-.)4!G"+/';!R!J-".';!4-:(!)$3!+--.'(H!R!G-:);!$)+-!)"W'!&-!&/$.W!&-!@(H!U'3'%%$!*$+'H!R! %-:);!.-&!/$6'!%-1<)'&';!14!!"#$#%&'()*&')&)-&$F-.-14!<(-J'%&!G"&/-:&!4-:(!$++"+&$.%'!-6'(! &/'!<$+&!&G-!4'$(+H!R&!/$+!3''.!$!)-.8!<(-%'++!$.;!R!&/$.W!4-:!,-(!4-:(!<$&"'.%'H! ! R!G-:);!)"W'!&-!&/$.W!14!%-11"&&''!1'13'(!@(H!P$(('.!0$))".H!Re1!,-(&:.$&'!&-!/$6'! 4-:!$+!14!:.;'(8($;!<(-8($1!$;6"+-(!$.;!-.!14!%-11"&&''H!P"&/-:&!4-:(!/')<!;:(".8!14! :.;'(8($;C!R!G-:);!/$6'!/$;!$.!"1<-++"3)4!;",,"%:)&!&"1'!8'&&".8!$))!14!%-:(+'+!-(8$."T';H!9+! 14!%-11"&&''!1'13'(!4-:!G'('!$)G$4+!&/'('!&-!8"6'!6$):$3)'!,'';3$%W+!<-".&".8!-:&!<-++"3)'! 8$<+!".!14!<(-J'%&+!$.;^-(!'F<)$.$&"-.+C!G/"%/!/')<';!1'!$!)-&!14!<('<$($&"-.!-,!14!&/'+"+!$.;! ;','.+'H! ! R!G-:);!)"W'!&-!$%W.-G)';8'!@(H!*/'(4)!I$((C!>-."%$!R1!O*'.&'(+!,-(!@"+'$+'!*-.&(-)! $.;!\('6'.&"-.Q!$.;!@(H!9)$1!>:."(:)!OR.&'(.$&"-.$)!*'.&('!,-(!@"$((/-'$)!@"+'$+'!U'+'$(%/C! #$.8)$;'+/Q!G/-+'!%-.&("3:&"-.+!/')<!+/$<';!&/'!&/'+"+!$.;!<(-J'%&+!&/$&!R!$1!G-(W".8!-.H!! ! 7$+&!3:&!.-&!)'$+&C!R!G-:);!)"W'!&-!&/$.W!14!)$3S1$&'+C!@(H!Z$3"."!b($&$C!I$('=!R+)$1C!$.;! V-($!a:++$.H!R!/$6'!)'$(.';!+-!1:%/!,(-1!'$%/!-,!4-:!$.;!R!&/$.W!4-:!$))!,-(!1$W".8!14!8($;! +%/--)!'F<'("'.%'!$.!'.J-4$3)'!-.'H! ! ! 6"! 4'#0*!.+!5.-%*-%$! !"#$%&'()*(+,%'-./0%1-,(2(#$$310#%1-,(-4(5"-3&(6&,-7&(8&9/&,01,6(%-(:#0%&'1#3(03#881410#%1-,()! 676!8'(%*&9'0!(0'$$9+9('%9.-$!777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777!:! KHKHK!\($%&"%$)!"1<)"%$&"-.+!-,!3$%&'("$)!&$F-.-14]!,(-1!$!%)"."%$)!$.;!$.!'<";'1"-)-8"%$)! <'(+<'%&"6'!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!D! KHKHD!#$%&'("$)!&$F-.-14!$+!&/'!,:.;$1'.&$)!%-1<-.'.&!".!:.;'(+&$.;".8!3$%&'("$)!;"6'(+"&4! $.;!'6-):&"-.!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!f! 67:!8'(%*&9'0!%';.-.3<!'%!%=*!$>*(9*$!0*?*0!'-1!'#.?*!7777777777777777777777777777777777777777777777777777777777!@! KHDHK!\-)4</$+"%!&$F-.-14!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!X! KHDHD!\/'.-&4<"%!$+<'%&+!-,!&/'!<-)4</$+"%!$<<(-$%/!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!M! KHDHY!\/4)-8'.'&"%!$+<'%&+!-,!&/'!<-)4</$+"%!$<<(-$%/!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!N! KHDHf!0'.-&4<".8!".!&/'!<-)4</$+"%!$<<(-$%/!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!KD! 67A!8'(%*&9'0!(0'$$9+9('%9.-!'%!%=*!$B#$>*(9*$!0*?*0!7777777777777777777777777777777777777777777777777777777777777777!6@! KHYHK!?:3+<'%"'+!)'6')!%)$++","%$&"-.+!".!&/'!<('S8'.-1"%!'($!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!KM! KHYHD!#$%&'("$)!+:3+<'%"'+!)'6')!%)$++","%$&"-.!".!&/'!8'.-1"%!'($!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!DE! 67C!4=*$9$!.#D*(%9?*!'-1!.B%09-*!777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777!:@! KHfHK!U'+-)6".8!&$F-.-1"%!".%-.+"+&'.%"'+!G"&/".!&/'!U/-;-3$%&'($%'$'!,$1")4]!<(-<-+$)!&-! 1-6'!&/'!(-+'-3$%&'(!%)$;'!".&-!U-+'-3$%&'($%'$'!,$1H!.-6!$.;!.:1'(-:+!8'.:+!$.;! +<'%"'+!)'6')!%/$.8'+!O*/$<&'(!DQ!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!DX!
Recommended publications
  • Spatiotemporal Dynamics of Marine Bacterial and Archaeal Communities in Surface Waters Off the Northern Antarctic Peninsula
    Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula Camila N. Signori, Vivian H. Pellizari, Alex Enrich Prast and Stefan M. Sievert The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149885 N.B.: When citing this work, cite the original publication. Signori, C. N., Pellizari, V. H., Enrich Prast, A., Sievert, S. M., (2018), Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula, Deep-sea research. Part II, Topical studies in oceanography, 149, 150-160. https://doi.org/10.1016/j.dsr2.2017.12.017 Original publication available at: https://doi.org/10.1016/j.dsr2.2017.12.017 Copyright: Elsevier http://www.elsevier.com/ Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula Camila N. Signori1*, Vivian H. Pellizari1, Alex Enrich-Prast2,3, Stefan M. Sievert4* 1 Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo (USP). Praça do Oceanográfico, 191. CEP: 05508-900 São Paulo, SP, Brazil. 2 Department of Thematic Studies - Environmental Change, Linköping University. 581 83 Linköping, Sweden 3 Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ). Av. Carlos Chagas Filho, 373. CEP: 21941-902. Rio de Janeiro, Brazil 4 Biology Department, Woods Hole Oceanographic Institution (WHOI). 266 Woods Hole Road, Woods Hole, MA 02543, United States. *Corresponding authors: Camila Negrão Signori Address: Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil.
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Genome-Scale Data Suggest Reclassifications in the Leisingera
    ORIGINAL RESEARCH ARTICLE published: 11 August 2014 doi: 10.3389/fmicb.2014.00416 Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Sven Breider 1†, Carmen Scheuner 2†, Peter Schumann 2, Anne Fiebig 2, Jörn Petersen 2, Silke Pradella 2, Hans-Peter Klenk 2, Thorsten Brinkhoff 1 and Markus Göker 2* 1 Department of Biology of Geological Processes - Aquatic Microbial Ecology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany 2 Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany Edited by: Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) Martin G. Klotz, University of North genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. Carolina at Charlotte, USA We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF Reviewed by: mass-spectrometry analysis and a re-assessment of the phenotypic data from the Martin G. Klotz, University of North Carolina at Charlotte, USA literature to settle this matter, aiming at a reclassification of the two genera. Neither Aharon Oren, The Hebrew Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. University of Jerusalem, Israel Rather, smaller monophyletic assemblages emerged, which were phenotypically more *Correspondence: homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the Markus Göker, Department of type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the Microorganisms, Leibniz Institute DSMZ - German Collection of reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter Microorganisms and Cell Cultures, arcticus gen.
    [Show full text]
  • Redalyc.Shallow-Water Hydrothermal Vents in the Azores (Portugal)
    Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management E-ISSN: 1646-8872 [email protected] Associação Portuguesa dos Recursos Hídricos Portugal Couto, Ruben P.; Rodriguesa, Armindo S.; Neto, Ana I. Shallow-water hydrothermal vents in the Azores (Portugal) Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management, vol. 15, núm. 4, 2015, pp. 495-505 Associação Portuguesa dos Recursos Hídricos Lisboa, Portugal Available in: http://www.redalyc.org/articulo.oa?id=388343047005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Gestão Costeira Integrada / Journal of Integrated Coastal Zone Management, 15(4):495-505 (2015) http://www.aprh.pt/rgci/pdf/rgci-584_Couto.pdf | DOI: 10.5894/rgci584 Shallow-water hydrothermal vents in the Azores (Portugal)* @, Ruben P. Couto@, a, b; Armindo S. Rodriguesa, c; Ana I. Netoa, d ABSTRACT The impact of global warming has been a major issue in recent years and will continue increasing in the future. Knowledge about the effects of ocean acidification on marine organisms and communities is crucial to efficient management. Island envi- ronments are particularly sensitive to externally induced changes and highly dependent on their coastal areas. This study summarises the published information on shallow-water hydrothermal vents of the Azores. These environments were reported to exhibit high metal concentration and acidified seawater due to the diffusion of acidic volcanic gases (mainly CO2) and a considerable temperature range.
    [Show full text]
  • A Salt Lake Extremophile, Paracoccus Bogoriensis Sp. Nov., Efficiently Produces Xanthophyll Carotenoids
    African Journal of Microbiology Research Vol. 3(8) pp. 426-433 August, 2009 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2009 Academic Journals Full Length Research Paper A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids George O. Osanjo1*, Elizabeth W. Muthike2, Leah Tsuma3, Michael W. Okoth2, Wallace D. Bulimo3, Heinrich Lünsdorf4, Wolf-Rainer Abraham4, Michel Dion5, Kenneth N. Timmis4 , Peter N. Golyshin4 and Francis J. Mulaa3 1School of Pharmacy, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 2Department of Food Science, Technology and Nutrition, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. 3Department of Biochemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 4Division of Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. 5Université de Nantes, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322, France. Accepted 27 July, 2009 A Gram-negative obligate alkaliphilic bacterium (BOG6T) that secretes carotenoids was isolated from the outflow of Lake Bogoria hot spring located in the Kenyan Rift Valley. The bacterium is motile by means of a polar flagellum, and forms red colonies due to the production of xanthophyll carotenoid pigments. 16S rRNA gene sequence analysis showed this strain to cluster phylogenetically within the genus Paracoccus. Strain BOG6T is aerobic, positive for both catalase and oxidase, and non- methylotrophic. The major fatty acid of the isolate is C18: 1ω7c. It accumulated polyhydroxybutyrate granules. Strain BOG6T gave astaxanthin yield of 0.4 mg/g of wet cells indicating a potential for application in commercial production of carotenoids.
    [Show full text]
  • Roseibacterium Beibuensis Sp. Nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea
    Curr Microbiol (2012) 65:568–574 DOI 10.1007/s00284-012-0192-6 Roseibacterium beibuensis sp. nov., a Novel Member of Roseobacter Clade Isolated from Beibu Gulf in the South China Sea Yujiao Mao • Jingjing Wei • Qiang Zheng • Na Xiao • Qipei Li • Yingnan Fu • Yanan Wang • Nianzhi Jiao Received: 6 April 2012 / Accepted: 25 June 2012 / Published online: 31 July 2012 Ó Springer Science+Business Media, LLC 2012 Abstract A novel aerobic, bacteriochlorophyll-contain- similarity), followed by Dinoroseobacter shibae DFL 12T ing bacteria strain JLT1202rT was isolated from Beibu Gulf (95.4 % similarity). The phylogenetic distance of pufM genes in the South China Sea. Cells were gram-negative, non- between strain JLT1202rT and R. elongatum OCh 323T was motile, and short-ovoid to rod-shaped with two narrower 9.4 %, suggesting that strain JLT1202rT was distinct from the poles. Strain JLT1202rT formed circular, opaque, wine-red only strain of the genus Roseibacterium. Based on the vari- colonies, and grew optimally at 3–4 % NaCl, pH 7.5–8.0 abilities of phylogenetic and phenotypic characteristics, strain and 28–30 °C. The strain was catalase, oxidase, ONPG, JLT1202rT stands for a novel species of the genus Roseibac- gelatin, and Voges–Proskauer test positive. In vivo terium and the name R. beibuensis sp. nov. is proposed with absorption spectrum of bacteriochlorophyll a presented two JLT1202rT as the type strain (=JCM 18015T = CGMCC peaks at 800 and 877 nm. The predominant cellular fatty 1.10994T). acid was C18:1 x7c and significant amounts of C16:0,C18:0, C10:0 3-OH, C16:0 2-OH, and 11-methyl C18:1 x7c were present.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • <I>Euprymna Scolopes</I>
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-10-2009 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes Brian Shawn Wong Won University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Animal Sciences Commons Recommended Citation Wong Won, Brian Shawn, "Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes" (2009). Honors Scholar Theses. 67. https://opencommons.uconn.edu/srhonors_theses/67 Characterizing the Role of Phaeobacter in the Mortality of the Squid, Euprymna scolopes . Author: Brian Shawn Wong Won Advisor: Spencer V. Nyholm Ph.D. University of Connecticut Honors Program Date submitted: 05/11/09 1 Abstract The subject of our study is the Hawaiian bobtail squid, Euprymna scolopes , which is known for its model symbiotic relationship with the bioluminescent bacterium, Vibrio fischeri . The interactions between E. scolopes and V. fischeri provide an exemplary model of the biochemical and molecular dynamics of symbiosis since both members can be cultivated separately and V. fischeri can be genetically modified 1. However, in a laboratory setting, the mortality of embryonic E. scolopes can be a recurrent problem. In many of these fatalities, the egg cases display a pink-hued biofilm, and rosy pigmentation has also been noted in the deaths of several adult squid. To identify the microbial components of this biofilm, we cloned and sequenced the 16s ribosomal DNA gene from pink, culture-grown isolates from infected egg cases and adult tissues.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Artificial Neural Network Analysis of Microbial Diversity in the Central and Southern Adriatic
    www.nature.com/scientificreports OPEN Artifcial neural network analysis of microbial diversity in the central and southern Adriatic Sea Danijela Šantić1*, Kasia Piwosz2, Frano Matić1, Ana Vrdoljak Tomaš1, Jasna Arapov1, Jason Lawrence Dean3, Mladen Šolić1, Michal Koblížek3,4, Grozdan Kušpilić1 & Stefanija Šestanović1 Bacteria are an active and diverse component of pelagic communities. The identifcation of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profle, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classifed the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more diferentiated by depth than by area, with temperature and identifed salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identifed genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium- related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors afecting picoplankton in the open sea environment.
    [Show full text]
  • Textile Waste and Microplastic Induce Activity and Development of Unique
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Textile waste and microplastic induce activity and 2 development of unique hydrocarbon-degrading marine 3 bacterial communities 4 5 Elsa B. Girard1, Melanie Kaliwoda2, Wolfgang W. Schmahl1,2,3, Gert Wörheide1,3,4 and 6 William D. Orsi1,3* 7 8 1 Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 9 80333 Munich, Germany 10 2 SNSB - Mineralogische Staatssammlung München, 80333 München, Germany 11 3 GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 12 4 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, 80333 Munich, Germany 13 *Corresponding author (e-mail: [email protected]) 14 15 16 17 18 KEYWORDS 19 Microplastic, Fiber, Hydrocarbon-degrading bacteria, Microbial community, Pollution 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Biofilm-forming microbial communities on plastics and textile fibers are of growing interest since 24 they have potential to contribute to disease outbreaks and material biodegradability in the 25 environment.
    [Show full text]
  • Albirhodobacter Marinus Gen. Nov., Sp. Nov., a Member of the Family Rhodobacteriaceae Isolated from Sea Shore Water of Visakhapatnam, India
    Author version: Antonie van Leeuwenhoek, vol.103; 2013; 347-355 Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteriaceae isolated from sea shore water of Visakhapatnam, India Nupur1, Bhumika, Vidya1., Srinivas, T. N. R2,3, Anil Kumar, P1* 1Microbial Type Culture Collection and Gene bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh - 160 036, INDIA 2National Institute of Oceanography (CSIR), Regional centre, P B No. 1913, Dr. Salim Ali Road, Kochi - 682018 (Kerala), INDIA Present Address: 3National Institute of Oceanography (CSIR), Regional centre, 176, Lawsons Bay Colony, Visakhapatnam - 530 017 (Andhra Pradesh), INDIA Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene bank Institute of Microbial Technology, Sector 39A, Chandigarh - 160 036, INDIA Email: [email protected] Phone: +91-172-6665170 1 Abstract A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9T, was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9T was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C16:0, C18:1 ω7c and summed in feature 3 (C16:1 ω7c and/or C16:1 ω6c). Strain N9T was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9T was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 % respectively.
    [Show full text]