Limibaculum Halophilum Gen. Nov., Sp. Nov., a New Member of the Family Rhodobacteraceae

Total Page:16

File Type:pdf, Size:1020Kb

Limibaculum Halophilum Gen. Nov., Sp. Nov., a New Member of the Family Rhodobacteraceae TAXONOMIC DESCRIPTION Shin et al., Int J Syst Evol Microbiol 2017;67:3812–3818 DOI 10.1099/ijsem.0.002200 Limibaculum halophilum gen. nov., sp. nov., a new member of the family Rhodobacteraceae Yong Ho Shin,1 Jong-Hwa Kim,1 Ampaitip Suckhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A Gram-stain-negative, cream-pigmented, aerobic, non-motile, non-spore-forming and short-rod-shaped bacterial strain, designated CAU 1123T, was isolated from mud from reclaimed land. The strain’s taxonomic position was investigated by using a polyphasic approach. Strain CAU 1123T grew optimally at 37 C and at pH 7.5 in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAU 1123T formed a monophyletic lineage within the family Rhodobacteraceae with 93.8 % or lower sequence similarity to representatives of the genera Rubrimonas, Oceanicella, Pleomorphobacterium, Rhodovulum and Albimonas. The major fatty acids were C18 : 1 !7c and 11-methyl C18 : 1 !7c and the predominant respiratory quinone was Q-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, two unidentified phospholipids, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 71.1 mol%. Based on the data from phenotypic, chemotaxonomic and phylogenetic studies, it is proposed that strain CAU 1123T represents a novel genus and novel species of the family Rhodobacteraceae, for which the name Limibaculumhalophilum gen. nov., sp. nov. The type strain is CAU 1123T (=KCTC 52187T, =NBRC 112522T). The family Rhodobacteraceae was first established by Garr- chemotaxonomic properties along with a detailed phyloge- ity et al. [1] as a member of the class Alphaproteobacteria netic analysis based on 16S rRNA gene sequences. (order Rhodobacterales, phylum Proteobacter). The names Selective isolation of strain CAU 1123T was performed were validated in Validation List 107 [2]. The class Alphap- according to Gordon and Mihm [17] by using the standard roteobacteria contains the most abundant bacteria from dilution plate technique. The appropriate dilutions were marine environments and the family Rhodobacteraceae is spread on marine agar 2216 (MA; Difco) plates and incu- also exclusively marine or hypersaline, with described iso- ˚ lates demonstrating salt tolerance [1, 3]. There are approxi- bated under aerobic conditions at 30 C for 10 days. A single colony of strain CAU 1123T was purified by streaking sev- mately 105 recognized genera in the family at the time of writing (www.bacterio.net/). Most members of the family eral times until pure culture was formed on MA at 30 C. À ˚ originate from marine environments, such as seawater, sedi- The strain was preserved at 80 C in marine broth 2216 (MB; Difco) supplemented with 25 % (v/v) glycerol. Strain ments, marine snails, marine hot springs, marine phyto- T plankton and marine sponges. Only 14 genera, including CAU 1123 has been deposited in the Korean Collection for Actibacterium [4], Hasllibacter [5], Huaishuia [6], Lenti- Type Cultures and the Biological Resource Centre, National T bacter [7], Oceanicella [8], Planktotalea [9], Poseidonocella Institute of Technology and Evaluation as KCTC 52187 T [10], Defluviimonas [11], Epibacterium [12], Litorisedimini- and NBRC 112522 , respectively. The type strains of type cola [13], Pararhodobacter [11], Pelagimonas [14], Pleomor- species of the most closely related genera, Rubrimonas clifto- T T phobacterium [15] and Profundibacterium [16], have been nensis OCh317 (=NBRC 100047 ), Oceanicella actignis T T described in the last 5 years. In the course of screening the PRQ-67 (=DSM 22673 ), Pleomorphobacterium xiame- bacteria off the west coast of the Korean peninsula, strain nense CLWT (=DSM 24423T), Rhodovulum sulfidophilum CAU 1123T was isolated from a mud sample from reclaimed Hansen W4T (=KCCM 41788T) and Albimonas donghaensis land in Modo (37 32¢12.28¢ N, 126 24¢51.47¢ E), Republic of DST (=KCTC 12586T), were obtained from the National Korea. The aim of the study was to establish the taxonomic Institute of Technology and Evaluation, the Deutsche position of strain CAU 1123T by using a polyphasic study Sammlung von Mikroorganismen und Zellkulturen, the that included the determination of phenotypic and Korean Culture Centre of Microorganisms and the Korean Author affiliations: 1Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea; 2Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand. *Correspondence: Wonyong Kim, [email protected] Keywords: Limibaculum halophilum; Rhodobacteraceae; Alphaproteobacteria. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain CAU 1123T is KX774334. Three figures are available with the online Supplementary Material. 002200 ã 2017 IUMS Downloaded from www.microbiologyresearch.org by IP: 165.194.103.153812 On: Thu, 25 Apr 2019 00:59:01 Shin et al., Int J Syst Evol Microbiol 2017;67:3812–3818 Collection for Type Cultures, and were used as reference The nearly complete 16S rRNA gene sequence (1403 bp) strains for fatty acid and biochemical analyses was obtained and compared with reference sequences avail- T able in the GenBank database. Phylogenetic analysis based The 16S rRNA gene of strain CAU 1123 was amplified T on the 16S rRNA gene showed that strain CAU 1123 using PCR with 27F and 1525R primers [18]. Multiple belonged to the family Rhodobacteraceae and formed a sepa- alignments with sequences of a broad selection of Rhodo- rate deep lineage with the recognized species of Rubrimonas, bacteraceae and calculation of sequence similarity levels Oceanicella, Pleomorphobacterium, Rhodovulum and Albi- were determined by using the CLUSTAL_X 2.1 program monas (Fig. 1). The trees reconstructed by using the least- [19] and the EzTaxon-e server (http://www.ezbiocloud. square, maximum-likelihood and maximum-parsimony net). Evolutionary distance matrices were created using algorithms presented a similar topology (data not shown). the neighbour-joining method [20]. Phylogenetic trees Strain CAU 1123T showed very low levels of 16S rRNA gene were generated by using three different methods: the sequence similarity to type strains of the most closely phylo- neighbour-joining [21], least-squares [22] and maximum- genetically related species in the family Rhodobacteraceae: likelihood [23] algorithms in the PHYLIP package [24]. R. cliftonensis OCh317T (similarity 93.8), O. actignis PRQ- The bootstrap resampling values, based on 1000 repli- 67T (similarity 93.0 %), P. xiamenense CLWT (similarity cates, were calculated using SEQBOOT and CONSENSE 93.0 %), Rhodovulum marinum JA128T (similarity 92.9 %) programs from the PHYLIP package [25]. The G+C con- and Albimonas pacifica P-50-3T (similarity 92.8 %). 16S tent of the genomic DNA was determined as described rRNA gene sequence similarities to all other species of the by Tamaoka and Komagata [26] using reversed-phase family Rhodobacteraceae were below 92.8 %. high-performance liquid chromatography (HPLC). The G T +C content was calculated by the ratio of deoxyguanosine Strain CAU 1123 and five reference strains, R. cliftonensis to thymidine using standard DNAs according to the OCh317T, O. actignis PRQ-67T, P. xiamenense CLWT, R. method of Mesbah et al. [27]. sulfidophilum Hansen W4T, and A. donghaensis DST were Rhodovulum steppense A-20sT (EU741680) 100 Rhodovulum strictum MB-G2T (D16419) 85 Rhodovulum viride JA756T (HE983843) 100 Rhodovulum sulfidophilum Hansen W4T (D16423) Rhodovulum mangrovi AK41T (HG529993) Rhodovulum iodosum N1 T (Y15011) 96 100 Confluentimicrobium lipolyticum SSK1-4T (KJ889015) 0.01 Rhodovulum marinum JA128T (AJ891122) Pseudoruegeria aestuarii MME-001T (KP410678) 100 T 99 Pseudoruegeria sabulilitoris GJMS-35 (KJ729032) 99 Pseudoruegeria aquimaris SW-255T (DQ675021) 95 Oceanicola litoreus M-M22T (JX291104) Rhodobacter veldkampii Hansen 51T (D16421) 91 Albidovulum xiamenense YBY-7T (HQ709061) Albimonas donghaensis DS2T (DQ280370) 79 Amaricoccus kaplicensis Ben101T (U88041) Oceanicella actignis PRQ-67T (JQ864435) 100 Pleomorphobacterium xiamenense CLW T (HQ709062) Limibaculum halophilum CAU 1123T (KX774334) Rubrimonas cliftonensis OCh317 T (D85834) 100 ‘Rubrimonas shengliensis’ SL014B-28A2 (GU125651) Escherichia coli DSM 30083T (X80725) Fig. 1. Phylogenetic tree derived from nearly complete 16S rRNA gene sequences showing the position of strain CAU 1123T among members of the family Rhodobacteraceae. The tree was reconstructed by using the neighbour-joining method and rooted Escherichia coli DSM 30083T (X80725) as the outgroup. Dots indicate that the corresponding nodes were also recovered in the trees generated with the maximum-likelihood and least-squares algorithms. Values of bootstrap (1000 resamplings) are indicated at the nodes and only values >70 % are shown. Bar, 0.01 substitutions per nucleotide position. Downloaded from www.microbiologyresearch.org by IP: 165.194.103.153813 On: Thu, 25 Apr 2019 00:59:01 Shin et al., Int J Syst Evol Microbiol 2017;67:3812–3818 cultivated on MA at their optimal growth temperatures to incubation. The pH value for growth was examined at 37 C determine their morphological, physiological and biochemi- in MB adjusted within a pH range of 4.5–11.5 (at intervals cal properties. Cell morphology was observed by light (DM of 0.5 pH unit) and values were confirmed again and 1000; Leica) and transmission electron (TEM; JEM 1010, adjusted using sodium acetate/acetic acid,
Recommended publications
  • Pufc Gene Targeted PCR Primers for Identification and Classification of Marine Photosynthetic Bacterium Rhodovulum Sulfidophilum
    Acta Scientific MICROBIOLOGY (ISSN: 2581-3226) Volume 4 Issue 2 February 2021 Research Article pufC Rhodovulum sulfidophilum Gene Targeted PCR Primers for Identification and Classification of Marine Photosynthetic Bacterium Aoi Koga, Nao Yamauchi, Mayu Imamura, Mina Urata, Tomomi Received: Kurayama, Ranko Iwai, Shuhei Hayashi, Shinjiro Yamamoto and January 28, 2021 Hitoshi Miyasaka* Published: December 30, 2020 © All rights are reserved by Hitoshi Department of Applied Life Science, Sojo University, Nishiku, Japan Miyasaka., et al. *Corresponding Author: Sojo University, Nishiku, Japan. Hitoshi Miyasaka, Department of Applied Life Science, DOI: 10.31080/ASMI.2020.04.0770 Abstract Rhodovulum sulfidophilum - The marine non-sulfur purple photosynthetic bacterium has a wide application potential in the fields sify various R. sulfidophilum strains, we designed a PCR primer set targeting pufC of aquaculture, renewable energy production, environmental protection, and biomaterial production. To detect, identify and clas pufC R. sulfidophilum gene encoding one of the photosystem proteins. - Nucleotide sequence alignment of the genes from five strains revealed that the 3’ region of this gene is rich in ious R. sulfidophilum pufC gene. For the validation of this nucleotide substitutions (approximately 10 substitutions/100 bp), making it suitable for the identification and classification of var R. sulfidophilum strains. strains. We designed a primer set that amplified 0.7 kb of the 3’ region of primerKeywords: set, we used fish fecal DNA as Rhodovulumthe PCR templates, sulfidophilum and successfully identified and classified several Photosynthetic Bacteria; ; PCR; Fish Fecal DNA Introduction R. sulfidophilum Rho- Marsupenaeus japonicus classified several strains from the intestinal tracts dovulum sulfidophilum The marine non-sulfur purple photosynthetic bacterium of some fish and kuruma shrimps ( ).
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Redalyc.Shallow-Water Hydrothermal Vents in the Azores (Portugal)
    Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management E-ISSN: 1646-8872 [email protected] Associação Portuguesa dos Recursos Hídricos Portugal Couto, Ruben P.; Rodriguesa, Armindo S.; Neto, Ana I. Shallow-water hydrothermal vents in the Azores (Portugal) Revista de Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management, vol. 15, núm. 4, 2015, pp. 495-505 Associação Portuguesa dos Recursos Hídricos Lisboa, Portugal Available in: http://www.redalyc.org/articulo.oa?id=388343047005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Gestão Costeira Integrada / Journal of Integrated Coastal Zone Management, 15(4):495-505 (2015) http://www.aprh.pt/rgci/pdf/rgci-584_Couto.pdf | DOI: 10.5894/rgci584 Shallow-water hydrothermal vents in the Azores (Portugal)* @, Ruben P. Couto@, a, b; Armindo S. Rodriguesa, c; Ana I. Netoa, d ABSTRACT The impact of global warming has been a major issue in recent years and will continue increasing in the future. Knowledge about the effects of ocean acidification on marine organisms and communities is crucial to efficient management. Island envi- ronments are particularly sensitive to externally induced changes and highly dependent on their coastal areas. This study summarises the published information on shallow-water hydrothermal vents of the Azores. These environments were reported to exhibit high metal concentration and acidified seawater due to the diffusion of acidic volcanic gases (mainly CO2) and a considerable temperature range.
    [Show full text]
  • Title a Marine Photosynthetic Microbial Cell Factory As a Platform
    A marine photosynthetic microbial cell factory as a platform Title for spider silk production Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Author(s) Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji Citation Communications Biology (2020), 3 Issue Date 2020-07-08 URL http://hdl.handle.net/2433/252537 © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included Right in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Type Journal Article Textversion publisher Kyoto University ARTICLE https://doi.org/10.1038/s42003-020-1099-6 OPEN A marine photosynthetic microbial cell factory as a platform for spider silk production Choon Pin Foong1,2, Mieko Higuchi-Takeuchi1, Ali D. Malay 1, Nur Alia Oktaviani1, Chonprakun Thagun1 & ✉ Keiji Numata 1,2 1234567890():,; Photosynthetic microorganisms such as cyanobacteria, purple bacteria and microalgae have attracted great interest as promising platforms for economical and sustainable production of bioenergy, biochemicals, and biopolymers.
    [Show full text]
  • Origin and Fate of Nitrite in Model Ecosystems: Case Studies in Groundwater and Constructed Wetlands
    ORIGIN AND FATE OF NITRITE IN MODEL ECOSYSTEMS: CASE STUDIES IN GROUNDWATER AND CONSTRUCTED WETLANDS Elena Hernández del Amo Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/668664 http://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial-SenseObraDerivada Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial- SinObraDerivada This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives licence Doctoral thesis Origin and fate of nitrite in model ecosystems: case studies in groundwater and constructed wetlands. Elena Hernández del Amo 2019 Doctoral thesis Origin and fate of nitrite in model ecosystems: case studies in groundwater and constructed wetlands. Elena Hernández del Amo 2019 Doctoral programme in Water Science and Technology. Thesis supervisors Dr. Lluís Bañeras Vives Dr. Frederic Gich Batlle PhD candidate Elena Hernández del Amo This thesis is submitted in fulfilment of the requirements to obtain the doctoral degree from the Universitat de Girona “Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.” Antonio Machado AGRAÏMENTS Sembla que ara sí, comença a acostar-se realment el final d’aquesta etapa, la tesi. Una etapa que sense vosaltres, la gent que m’envolta, no hagués estat possible, perquè d’una manera o altra tothom ha fet possible que aquesta tesi acabés agafant forma. Així que, què menys que dedicar- vos com a mínim un apartat, no? Aquest apartat no pot començar sense un GRÀCIES en majúscules a tothom, però en primer lloc als “jefes”, Catxo i Gich.
    [Show full text]
  • Textile Waste and Microplastic Induce Activity and Development of Unique
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Textile waste and microplastic induce activity and 2 development of unique hydrocarbon-degrading marine 3 bacterial communities 4 5 Elsa B. Girard1, Melanie Kaliwoda2, Wolfgang W. Schmahl1,2,3, Gert Wörheide1,3,4 and 6 William D. Orsi1,3* 7 8 1 Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, 9 80333 Munich, Germany 10 2 SNSB - Mineralogische Staatssammlung München, 80333 München, Germany 11 3 GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 12 4 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, 80333 Munich, Germany 13 *Corresponding author (e-mail: [email protected]) 14 15 16 17 18 KEYWORDS 19 Microplastic, Fiber, Hydrocarbon-degrading bacteria, Microbial community, Pollution 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.08.939876; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Biofilm-forming microbial communities on plastics and textile fibers are of growing interest since 24 they have potential to contribute to disease outbreaks and material biodegradability in the 25 environment.
    [Show full text]
  • Albirhodobacter Marinus Gen. Nov., Sp. Nov., a Member of the Family Rhodobacteriaceae Isolated from Sea Shore Water of Visakhapatnam, India
    Author version: Antonie van Leeuwenhoek, vol.103; 2013; 347-355 Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteriaceae isolated from sea shore water of Visakhapatnam, India Nupur1, Bhumika, Vidya1., Srinivas, T. N. R2,3, Anil Kumar, P1* 1Microbial Type Culture Collection and Gene bank, Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh - 160 036, INDIA 2National Institute of Oceanography (CSIR), Regional centre, P B No. 1913, Dr. Salim Ali Road, Kochi - 682018 (Kerala), INDIA Present Address: 3National Institute of Oceanography (CSIR), Regional centre, 176, Lawsons Bay Colony, Visakhapatnam - 530 017 (Andhra Pradesh), INDIA Address for correspondence* Dr. P. Anil Kumar Microbial Type Culture Collection and Gene bank Institute of Microbial Technology, Sector 39A, Chandigarh - 160 036, INDIA Email: [email protected] Phone: +91-172-6665170 1 Abstract A novel marine, Gram-negative, rod-shaped bacterium, designated strain N9T, was isolated from a water sample of the sea shore at Visakhapatnam, Andhra Pradesh (India). Strain N9T was found to be positive for oxidase and catalase activities. The fatty acids were found to be dominated by C16:0, C18:1 ω7c and summed in feature 3 (C16:1 ω7c and/or C16:1 ω6c). Strain N9T was determined to contain Q-10 as the major respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol, two aminophospholipids, two phospholipids and four unidentified lipids as polar lipids. The DNA G+C content of the strain N9T was found to be 63 mol%. 16S rRNA gene sequence analysis indicated that Rhodobacter sphaeroides, Rhodobacter johrii, Pseudorhodobacter ferrugineus, Rhodobacter azotoformans, Rhodobacter ovatus and Pseudorhodobacter aquimaris were the nearest phylogenetic neighbours, with pair-wise sequence similarities of 95.43, 95.36, 94.24, 95.31, 95.60 and 94.74 % respectively.
    [Show full text]
  • A Noval Investigation of Microbiome from Vermicomposting Liquid Produced by Thai Earthworm, Perionyx Sp
    International Journal of Agricultural Technology 2021Vol. 17(4):1363-1372 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) A novel investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1 Kraisittipanit, R.1,2, Tancho, A.2,3, Aumtong, S.3 and Charerntantanakul, W.1* 1Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand; 2Natural Farming Research and Development Center, Maejo University, Chiang Mai, Thailand; 3Faculty of Agricultural Production, Maejo University, Thailand. Kraisittipanit, R., Tancho, A., Aumtong, S. and Charerntantanakul, W. (2021). A noval investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1. International Journal of Agricultural Technology 17(4):1363-1372. Abstract The whole microbiota structure in vermicomposting liquid derived from Thai earthworm, Perionyx sp. 1 was estimated. It showed high richness microbial species and belongs to 127 species, separated in 3 fungal phyla (Ascomycota, Basidiomycota, Mucoromycota), 1 Actinomycetes and 16 bacterial phyla (Acidobacteria, Armatimonadetes, Bacteroidetes, Balneolaeota, Candidatus, Chloroflexi, Deinococcus, Fibrobacteres, Firmicutes, Gemmatimonadates, Ignavibacteriae, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia). The OTUs data analysis revealed the highest taxonomic abundant ratio in bacteria and fungi belong to Proteobacteria (70.20 %) and Ascomycota (5.96 %). The result confirmed that Perionyx sp. 1
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]
  • Fuscibacter Oryzae Gen. Nov., Sp. Nov., a Phosphate- Solubilizing Bacterium Isolated from the Rhizosphere of Rice Plant
    Fuscibacter Oryzae Gen. nov., sp. nov., A Phosphate- Solubilizing Bacterium Isolated from the Rhizosphere of Rice Plant Geeta Chhetri Dongguk University Minchung Kang Dongguk University Jiyoun Kim Dongguk University Inhyup Kim Dongguk University Yoonseop So Dongguk University Taegun Seo ( [email protected] ) Dongguk Univesity https://orcid.org/0000-0001-9701-2806 Research Article Keywords: Fuscibacter oryzae, non-phototrophic, binary ssion, phosphate-solubilization, brown-pigment Posted Date: June 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-382391/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Antonie van Leeuwenhoek on July 17th, 2021. See the published version at https://doi.org/10.1007/s10482-021-01619-2. Page 1/18 Abstract An ovoid to rod shaped, white tobrown pigmented, facultative anaerobic, mesophilic, non-phototrophic, Gram-staining-negative, non-motile, multiply by binary ssion designated strain KVB23T, which was isolated from root of rice plant, near Ilsan, South Korea, was investigated for its taxonomic position by polyphasic approach. Optimal growth was found to occur at 30˚C, at pH 6.5 and in the absence of NaCl on R2A. Phylogenetic analysis based on the 16S rRNA gene sequence of strain KVB23Trevealed that it formed a distinct lineage, as a separate deep branch within the family Rhodobacteriaceae, with <96.5% sequence similarity to representatives of the genera Rhodobacter, Xinfangfangia, Tabrizicola, Falsirhodobacter, Haematobacter, Paenirhodobacter, Pseudorhodobacter and Pararhodobacter. Based in 16S rRNA sequences strain KVB23T was most closely related to Tabrizicola fusiformis KCTC 62105T (96.5%) and Rhodobacter thermarumKCTC 52712T(96.2%).The draft genome of strain KVB23Twas 3.80 bp long with a DNA G + C content of 63.1 %.
    [Show full text]